

سنتعرف على المتطلبات الـواجب توفرهـا فــى مــدير المشروع الناجح، ومعرفة الأسباب التـــى تعيــق تحقيــق المشروع لأهدافه فس اللوقت والكلفة والمواصفات بالضبط كما خطط لها. والمخاطر ومعرفة العوامل البيئية التى تسامم في وجودها.

September 21, 2024 الكاتب: د. محمد العامري عدد المشاهدات: 3150

الأهداف الدراسية للمقال:

بعد دراسة هذا الفصل يؤمل أن يكون القارئ قادراً على:

- معرفة المتطلبات الواجب توفرها في مدير المشروع الناجح.
- معرفة الأسباب التي تعيق تحقيق المشروع لأهدافه في الوقت والكلفة والمواصفات بالضبط كما خطط .2 لها.
 - تعريف المخاطر ومعرفة العوامل البيئية التي تساهم في وجودها.
 - 4. استخدام الأساليب الكمية في اتخاذ القرارات الإدارية في حالات البيئة الثلاث:

حالة التأكد Certainty حالة المخاطرة Risk حالة عدم التأكد Uncertainty

- 5. تعريف إدارة المخاطر وفهم مراحلها المختلفة.
- 6. معرفة الاستراتيجيات المستخدمة في معالجة المخاطر.
 - 7. استخدام الاساليب الكمية في إدارة المخاطر:

الأساليب الكمية في تحديد معدل العائد على الاستثمار بأشكاله المختلفة. الأساليب الكمية في تحديد معامل المخاطرة بأشكاله المختلفة. استخدام نموذج العائد والمخاطرة SML في تحليل المخاطر ومراقبتها.

إدارة المخاطر في المشاريع

Project Risk Management

تمميد:

عند الحديث عن المتطلبات الواجب توفرها في مدير المشروع الناجح نقول إن من أهمها:

- 1- القدرة على امتلاك الموارد Resource Acquisition
 - 2- امتلاك المهارات الفنية Technical Skills
 - 3- امتلاك المعرفة Knowledge
 - 4- امتلاك مهارات التفاوض Negotiation Skills

بالإضافة إلى مهارات أخرى، وكل ذلك حتى يكون مدير المشروع قادراً على إدارة المشروع في جميع مراحله بطريقة كفؤة وفاعلة والنجاح في الوصول إلى أهداف المشروع. ولكن وبالرغم من ذلك وحتى لو امتلك مدير المشروع معظم هذه المتطلبات واستطاع توفير الموارد التي يحتاجها المشروع، إلا أنه من الصعب أن يقوم مدير المشروع وفريقه في إنهاء المشروع في التاريخ المطلوب بالضبط On Time وبالكلفة المحددة بالضبط At Cost وبالكلفة المحددة بالضبط At Cost وإدارتها إلى أنه بالضبط وإدارتها إلى أنه من النافيط وإدارتها إلى أنه من المشاريع وإدارتها إلى أنه يسجل أن هناك مشروع واحد قد حقق أهدافه الثلاثة في الوقت والكلفة والمواصفات بالضبط كما تم التخطيط لها وكما حددت في الجدول Schedule والموازنة التقديرية Budget والمواصفات بالضبط كما تم التخطيط لها وكما حددت في الجدول Schedule والموازنة التقديرية تجاوزت الكلفة الواردة في الموازنة توقفت وألفيت في منتصف الطريق، وأن أكثر من اك% من المشاريع قد تجاوزت الكلفة الواردة في الموازنة التقديرية بنسبة 100%، وأن أكثر من نصفها أيضاً قد تجاوز الوقت المخطط له في الجدول بنسبة 200%.

إن عـدم قـدرة مـدير المشـروع وفريقـه علـى إكمـال المشـروع فــي الــوقت المطلــوب وبالكلفــة المقــدرة والمواصفات المحددة مسبقاً، إنما يعود لعدة أسباب، من أهمها:

- 1- إن إعداد أدوات إدارة المشروع: خطة المشروع Project Plan وجدول المشروع Project Schedule وموازنة المستقبلية، المشروع Project Schedule يتم بالاعتماد على دراسات يستخدم فيها التنبؤ لتقدير الاحتمالات المستقبلية، وهذا يعني أنه يتم التعامل مع حالة من عدم التأكد Uncertainty تجعل من التقدير الدقيق أمراً فيه صعوبة.
- 2- أن التنفيذ الجيد الذي يقربنا من تحقيق أهداف المشروع (كما تم التخطيط لها مسبقاً) إنما يحتاج إلى امتلاك معرفة فنية، وخبرات ومهارات في استخدام أدوات الرقابة على المشروع والبرمجيات الخاصة بذلك بالإضافة إلى أمور أخرى. وغياب واحدة من هذه المعارف والمهارات سيؤثر على قدرة مدير المشروع وفريقه في الوصول إلى أهداف المشروع كما خطط لها بالضبط.

- 3- أن تنفيذ المشروع وإيصاله إلى أهداف لا يعتمد فقط على مدير المشروع وفريقه، وإنما يعتمد على لوعات أخرى عديدة مثل المـوردين Suppliers، مقـاولي البـاطن Subcontractors، الجـوانب القانونيـة الوعاد، سياسة الشركة الأم وCustomer Preferences، رغبات الزبون Customer Preferences وأمور أخرى، وكل هذه الأمور ستؤدي إلى التقاطع والتداخل أثناء التنفيذ وستؤثر بالتأكيد على قدرة مدير المشروع في تحقيق أهداف المشروع كما خطط لها.
- 4- أن هناك ظروفاً بيئية بعضها خارج عن إرادة مدير المشروع، قد تؤثر على قدرة مدير المشروع في إيصال المشروع في إيصال المشروع لأهدافه مثل: القوانين الحكومية، المناخ، الكوارث الطبيعية، الإضرابات العمالية، التضخم وارتفاع أسعار المواد، تغيير أسعار الفائدة، نقص الخبرات ... إلخ

استناداً إلى ما تقدم فإن على إدارات الشركات التي تعمل في المشاريع أن تولي اهتماماً كبيراً بالمخاطر التي تواجه مشاريعها، وأن تقوم بإعداد فريق من الخبراء لدراسة هذه المخاطر، وقد دأبت بعض الشركات في الآونة الأخيرة على تشكيل إدارة مستقلة تسمى إدارة المخاطر Risk Monogement وذلك من أجل القيام بالتخطيط والتقييم للمخاطر التي يحتمل أن يواجهها المشروع وطرق معالجتها ومراقبة تنفيذ هذه المعالجات.

تعريف المخاطر Risk Definition

هــي مقياس لاحتماليـة Probability وتبعـات Consequences عـدم الوصــول إلــى أهــداف المشــروع كمــا تــم تحديدها والتخطيط لها مسبقاً. وكما تم الإشارة سابقاً فإن المخاطر تكمن في حالة عدم التأكد البيئي لأن الخطر يتشكل في نقص المعرفة عن الأحداث المستقبلية. وعليه فإن هناك مكونين رئيسيين للخطر، المكون الخطر يتشكل في نقص المعرفة عن الأحداث المستقبلية. وعليه فإن هناك مكونين رئيسيين للخطر، المكون الثائج الخطر المحتمل على النتائج الموحدة الخطر المحتمل على النتائج الموحد ما المحتمل على النتائج الموحد ما المحتمل على النتائج

Risk = f (Probability, Impact) ????.. 9 ? 1

بيئة المخاطر في المشروع Project Risk Environment

إن طبيعة المخاطر التي تواجه المشروع إنما تعتمد بشكل أساسي على حالة البيئة التي يعمل بها المشروع ومستوى عدم التأكد Uncertainty فيها، والبيئة كما درسنا هي مجموعة العوامل التي تحيط بالمشروع وتؤثر (وتتأثر) بشكل مباشر أو غير مباشر على أداء المشروع وقدرته على تحقيق أهدافه. وتتكون من البيئة الخارجية External Environment والتي تحتوي على الفرص Opportunities والتهديدات External Environment وتضمن كل من البيئة العامة General Environment مثل البيئة الاقتصادية والسياسية والاجتماعية والثقافية والتكنولوجية والطبيعية، والبيئة الخاصة Jhternal Environment مثل الزبائن والموردون والمالكون والدائنون الإنبائن والموردون والمالكون والدائنون المعلومات الهيكل التنظيمية ونظم المعلومات. وحتى نستطيع تحديد مستوى عدم التأكد Uncertainty في البيئة فإن البيئة ولمى:

- درجة التعقيد Complexity وهي مجموعة العناصر التي تؤثر في عدد مدخلات ومخرجات المشروع.
- 2. درجة الحركية Dynamism: وهي مجموعة العناصر التي تؤثر في تحريك بيئة المشروع وحصول تغير وعدم ثبات فيها.
- 3. درجة الفنى Richness: وهــي مجموعــة المــوارد المتــوفرة فــي بيئــة المشــروع وتــؤثر فــي قــدرته علـــى الاستمرار.

استناداً إلى ما تقدم فإن المشروع يعمل في واحدة من الحالات البيئية التالية:

السئة المؤكدة Certain Environment

وفي هذه البيئة تكون جميع البيانات المطلوبة متوفرة، والنتائج واضحة ومعروفة، وعلى مدير المشروع وفريقه أن يختاروا القرار الأفضل للمشروع (الأعلى منفعة أو الأقل كلفة).

مثال 9 🛚 1

توفر لأحد المستثمرين مبلغاً من المال وأراد أن يستثمره في واحد من ثلاثة مشاريع فإذا كان العائد (الربح) الذي سيحصل عليه من كل مشروع معروف كما هو مبين في الجدول 9 ½1.

المطلوب: في أي المشاريع الثلاثة تنصح بالاستثمار؟

جدول 9 🛚 1

بيانات مثال 9 🛚 1

	المشروع Project		العائد \$ Revenue
А		900.000	
В		100.000	
С		80.000	

الحل: سيقوم المستثمر في استثمار المبلغ في مشروع B لأنه يحقق أعلى ربح.

البيئة الخطرة Risk Environment

وهـذه هـي البيئـة التـي تمـارس فيهـا إدارة المخـاطر، وهـي البيئـة التـي تكـون الاحتمـالات المتـوقعـة للبـدائل معروفة، وإن كل احتمال سينتج عنه ناتج وبديل يختلف عن الآخر وعلى مدير المشروع أن يختار البديل الذي يريده مع تحمل المخاطر الناتجة عن هذا الاختيار.

وفي هذه الحالة فإن مدير المشروع يمكن أن يستخدم أحد معيارين مختلفين للمساعدة في اتخاذ القرار المناسب:

- 1. القيمة المالية المتوقعة (EMV) القيمة المالية المتوقعة.
- 2. خسارة الفرصة المتوقعة Expected Opportunity Loss (EOL)

مثال 9 🛚 2

يحتاج أحد المستشفيات الخاصة إلى التوسع لمواكبة ازدياد الإقبال عليه، وكان أمامه خياران: إما أن يبني جناحاً كبيراً أو أن يبني جناحاً صغيراً. إذا استمر عدد سكان المدينة التي يقع فيها المستشفى بالازدياد فإن الجناح الكبير متوقع أن يحقق عائداً قدره \$300.000 في السنة والجناح الصغير متوقع أن يحقق عائداً قدره \$170.000 في السنة أما إذا بقي عدد سكان المدينة ثابتاً فإن بناء الجناح الكبير سيؤدي إلى خسارة قدرها \$170.000 أن احتمال أن ينمو عدد سكان المدينة هو \$0.7 وأن يبقى ثابتاً هو \$0.0.

المطلوب:

ماذا تنصح المستشفى أن يفعل مستخدماً الطرق التالية:

- 1. معيار القيمة المالية المتوقعة ((EMV
 - 2. معيار خسارة الفرصة البديلة (EOL)

الحل:

ا. باستخدام طريقة القيمة المالية المتوقعة (EMV)

جدول 9 🛚 2

حل مثال 9 🛭 2 بطريقة EMV

	State of Nature	عدد السكان ثابت عدد grow Population remains		
Alternative البديل	عدد السكان ينمو Population grow \$ Revenue	Population remains		
بناء جناح کبیر/ Build large wing	300.000	170.000 -		
بناء جناح صغیر/ Build small wing	120.000	90.000 -		
عمل لا شيء / Do nothing	0	0		
احتمالية الحدوث/ Probability	0.7	0.3		

EMV of large wing = 300.000 2 0.7 (-170.000 2 0.3) = 159.000\$

EMV of small wing = $120.000 \ 20.7 \ (-90.000 \ 20.3) = 57000$ \$

EMV of do nothing = 0 2 0.7 (0 2 0.3) = 0\$

إذا البديل الأول (بناء جناح كبير) هو الأفضل لأنه يحقق عائداً مالياً أفضل وهو 159000\$

ا. باستخدام طريقة قيمة الفرصة البديلة (EOL)

نقوم بطرح القيم الموجودة في كل عمود في الجدول السابق 9-2 من أكبر قيمة في ذلك العمود وذلك بهدف الحصول على جدول خسارة الفرصة والنتائج تظهر في الجدول 9-3

جدول 9 🛚 3

حل مثال 9 🛭 2 بطریقة OL

حالة الطبيعية State of Nature

عدد السكان ينمو البديل Alternative

Population grow \$ Revenue عدد السكان ثابت Population remains \$ the same revenue

بناء جناح کبیر/ Build large wing	0	170.000
بناء جناح صغیر/ Build small wing	180.000	90.000
عمل لا شيء / Do nothing	300.000	0
احتمالية الحدوث/ Probability	0.7	0.3

نقوم بحساب العائد المتوقع (EMV) بنفس الطريقة التى استخدمت فى الفرع 1 على النحو الآتى:

EMV of large wing = 0 2 0.7 + 170.000 2 0.3 = 51000\$

EMV of small wing = 180.000 2 0.7 + 90.000 2 0.3 = 153000\$

EMV of do nothing = 300.000 2 0.7 (0 2 0.3) = 210.000\$

وبناء على النتائج يتم اختيار البديل الذي يحقق أقل خسارة متوقعة وهو البديل الأول (بناء جناح كبير).

البيئة في حالة عدم التأكد التام Uncertain Environment

وتمتاز هذه البيئة بالفموض وعدم التأكد بسبب عدم توفر البيانات الكافية وتكون البيانات قليلة لدرجة لا تساعد حتى في توقع احتمالات ظهور الأحداث. وسيتم توضيح طرق اتخاذ القرار في هذه الحالة البيئية من خلال حل المثال 9-3

مثال 9 🛚 3

بالرجوع إلى مثال 9 🛭 2 مع إلغاء احتمالية الحدوث Probability يصبح مثالًا على حالة عدم التأكد البيئي. وفي هذه الحالة البيئية (حالة عدم التأكد) يلجأ مدير المشروع ومتخذوا القرار معه إلى البحث عن معايير خاصة تساعد في اتخاذ القرار وتحديد البديل الأفضل، ومن أهم هذه المعايير:

1. المعيار المتفائل Maxi. Max (أفضل الأفضل) Optimistic وفي هذا المعيار يفترض متخذ القرار أن الظروف كلها لصالحه فيختار حالة الطبيعة الأفضل لكل بديل ثم يختار البديل الأفضل من بينها. كما هو مبين في الجدول رقم 9- 4.

جدول 9 🛚 4

حل مثال 9 🛭 3 باستخدام معیار Maxi Max

State of Nature	حالة الطبيعية
-----------------	---------------

البديل Alternative	عدد السكان ينمو Population grow Revenue \$	عدد السكان ثابت Population remains the same revenue \$	Maximum Row \$ Revenue
بناء جناح کبیر/ Build large wing	300.000	170.000 -	300.000

بناء جناح صغیر/ Build small wing	10.000	90.000 -	120.000
عمل لا شيء / Do nothing	0	0	0

وعليه سيكون قرار بناء جناح كبير هو القرار الأفضل.

2. المعيـار المتشـائم Moxi Min (أفضـل الأســوأ) (Pessimistic) وفــي هــذا المعيـار يفتــرض متخــذ القــرار أن الظروف سيئة دائماً في كل البدائل، فيختار أسوأ حالة لكل بديل ثم يختار الأفضل من بينها كما هو موضح في الجدول 9 🛭 5.

> جدول 9 🛭 5 حل مثال 9 🗈 3 باستخدام معیار Maxi Min

حالة الطبيعية State of Nature

البديل Alternative	عدد السكان ينمو Population grow Revenue \$	عدد السكان ثابت Population remains the same revenue \$	Maximum Row \$ Revenue
بناء جناح کبیر/ Build large wing	300.000	170.000 -	170.000 -
بناء جناح صفیر/ Build small wing	120.000	90.000 -	90.000 -
عمل لا شيء / Do nothing	0	0	0

وعليه فإن قرار عمل لا شيء (Do nothing) هو الأفضل.

3. المعيار العقلاني أو معيار لابلاس Laplace ويسمى معيار الاحتمالات المتساوية لأن متخذ القرار يعطي احتمالات متساوية لحالات الطبيعة، ويتم تحديد البدائل عن طريق حساب الوسط الحسابي لكل بديل من هذه البدائل كما هو مبين في الجدول 9 \[9.

جدول 9 🛚

حل مثال 9 🏿 3 باستخدام معیار Laplace

حالة الطبيعية State of Nature

البديل Alternative	عدد السكان ينمو Population grow Revenue \$	عدد السكان ثابت Population remains the same revenue \$	Maximum Row \$ Revenue
بناء جناح کبیر/ Build large wing	300.000	170.000 -	65000
بناء جناح صفير/ Build small wing	120.000	90.000 -	15.000
عمل لا شيء / Do nothing	0	0	0

وعليه يكون بناء جناح كبير هو الأفضل.

4. معيار الواقعية أو معيار هـورويز Hurwicz وهـو معيار تـوفيقي بيـن المتشائم والمتفائـل ويتـم تحديـد البحائل في هذا المعيار باستخدام معامل التفاؤل (معامل الواقعية) ويشار له بعلامة ، وتكون قيمة المعيار: ٦
 آ 0. وكلما اقترب من ٦ يكون متخذ القرار متفائلاً. وكلما اقرب من صفر يكون متخذ القرار متشائماً. كما يتم احتساب البديل بضرب أعلى قيمة بمعيار الواقعية وأقل قيمة بالمتمم (- ٦) وتجمع القيمتين للحصول على البديل حسب المعادلة الرياضية 2 آ 9

Expected Value = X1() + X2(1-) 22.9 2

ويتم حل المثال 9 🛭 3 باستخدام معيار الواقعية إذا تم اعتبار 0.9 = كما هو مبين في الجدول 9 🖺 7.

حدول 9 🛚 7

حل مثال 9 🛚 3 باستخدام معیار Harwicz

حالة الطبيعية State of Nature

البديل Alternative	عدد السكان ينمو Population grow \$ Revenue	عدد السكان ثع ثابت قع Population Expe remains the Outo same revenue \$ Rev	
بناء جناح کبیر/ Build large wing	300.000	170.000 -	253000
بناء جناح صغیر/ Build small wing	120.000	90.000 -	99000

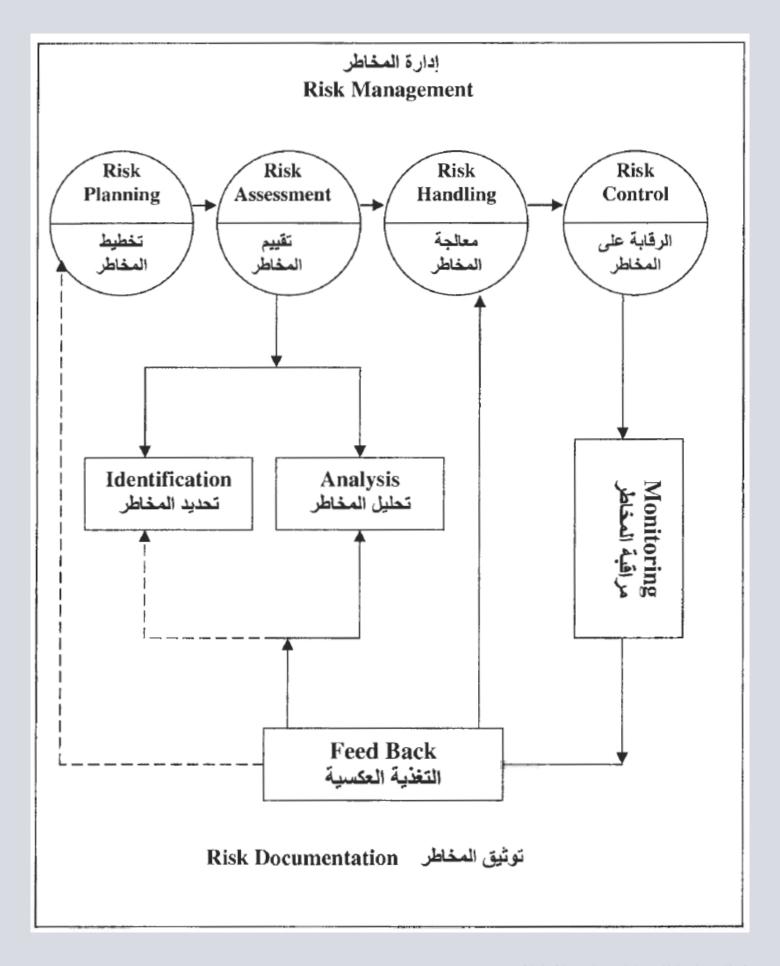
عمل لا شيء / Do nothing	0	0	0
معيار الواقعية/ Ciriterion of Realism	0.9	0.1	

وعليه يكون بناء جناح كبير هو الأفضل.

5. معيار الندم Minimax أو معيار Regret ويسمى أيضاً معيار Savage. وباستخدام هذا المعيار يتم تحويل جدول العوائد إلى مصفوفة الندم كما فعلنا في أسلوب الفرصة البديلة، وبعد ذلك يتم اختيار البديل الذي يقابله أقل ندم كما هو مبين في جدول 9 🏿 8

جدول 9 🛭 8 حل مثال 9 🗈 3 باستخدام معيار Savage

حالة الطبيعية State of Nature


البديل Alternative	عدد السكان ينمو Population grow Revenue \$	عدد السكان ثابت Population remains the same revenue \$	العائد المتوقع Expected Outcome \$ Revenue
بناء جناح کبیر/ Build large wing	0	170.000	170.000
بناء جناح صفير/ Build small wing	180.000	90.000	180.000
عمل لا شيء / Do nothing	300.000	0	300.000

وعليه يكون بناء جناح كبير هو الأفضل.

إدارة المخاطر Risk Management

مي عملية منتظمة تتضمن الأفعال والممارسات اللازمة لتعريف المخاطر وتحليلها ومعالجتها وتوثيقها. وتتكون إدارة المخاطر Risk Planning، مرحلة تقييم المخاطر Risk Assessment وتمر عملية تقييم المخاطر Risk Control ثم تحليلها وهذه المراحل Risk Control ثم مرحلة الرقابة على المخاطر Risk Control ثم موضحة في الشكل Pisk Control ثم موضحة في الشكل Pisk Control وهذه المراحل موضحة في الشكل Pisk Control وهذه المراحل

شكل 9 🛭 ٦ مراحل عملية إدارة المخاطر

1- التخطيط للمخاطر Risk Planning

وهي عملية تطوير وتوثيق الطرق التي سيتم من خلالها تعريف وتحليل المخاطر ثم تطوير خطط لمعالجة المخاطر، ومراقبة التغير الحاصل في تطبيق هذه الخطط.

2- تقييم المخاطر Risk Assessment

وهي عملية تحديد Identifying ثم تحليل Analyzing المخاطر التي تعيق وصول المشروع إلى أهدافه في الوقت المحدد والكلفة المقدرة والمواصفات المطلوبة. وكما أشرنا سابقاً فإن هذه المرحلة تتكون من جزأين: أ. تعريف المخاطر Risk Identifying عن طريق تحديد أنواع المخاطر التي تواجه المشروع في كل مرحلة من مراحل عمله وقد تم تلخيص هذه المخاطر وبلورتها في الشكل 9 ½.

ب. تحليل المخاطر Risk Analyzing وهناك عدة طرق لتصنيف وتحليل المخاطر في السوق نذكر منها: تصنيف المخاطر من حيث قابلية التجنب والإلغاء وبناء على هذا التصنيف هناك نوعين من المخاطر: مخاطر السوق Market Risk وهي المخاطر التي تؤثر في جميع المشاريع والشركات التي تعمل في السوق بنفس الدرجة، وهي غير قابلة للإلغاء، مثل القرارات الحكومية، سعر الفائدة، التضخم في الأسعار، الكوارث ... إلخ. ومخاطر أخرى تتعلق بالمشروع نفسه وتسمى Diversable Risk وهذه المخاطر يمكن مواجهتها وتقليلها من خلال تنويع الاستثمار، التكنولوجيا المستخدمة، كفاءة العاملين، التدريب، توفر الموارد، المنافسين.

تعريف المخاطر عبر مراحل حياة المشروع

شكل 9 🛚 2

	Selection	Planning	Execution	Termination	
		اة المشروع 🛨	مراحل حيا		
	اعتماد المشروع	التخطيط	التنفيذ	الإنهاء (الاغلاق)	
مستوى المخاطر					حجم المفاطرة
انواع المخاطر	عدم توفر خبراء. ضعف في تعريف مشكلة المشروع. عدم وجود دراسة جدوى. أهداف غير واضحة. شراء مناقصات غير مدروسة عن طريق جانبيه غير مشروعة.	 عدم وجود دراسة مخاطرة. تخطيط سريع ومتهور. عدم وضوح في خصائص المشروع. عدم توفر الدعم الإداري. عدم وضوح تحديد الأدوار والمهمات. فريق لا يملك الخبرة. 	 عمال غير ماهرون. مدى توفر المواد. الخبرات. تغير مدى المشروع. تغير في جدول المشروع. المشروع. المتطلبات المنتظمة أول بأول. عدم وجود نظام رقابة في المشروع. 	 جودة ربيئة عدم قبول الزبون تغيرات مخالفة للمخططات الرنيمية. مشاكل في السيولة النقدية. 	

تصنيف المخاطر من حيث مصدرها وبناء على هذا التصنيف هناك نوعين من المخاطر: مخاطر خارجية مثل القرارات والتشريعيات الحكومية، مخاطر الطبيعة، سعر الفائدة، معدلات الإقراض ... إلخ، ومخاطر داخلية مثل إضراب عمال الشركة، مشاكل التحفقات النقدية، خطط السلامة العامة، التغيير في التكنولوجيا المستخدمة، مشاكل متعلقة بالتصاميم الهندسية، حقوق الملكية، عقود الامتياز، التعاقد الفرعي (مقاولي الباطن)، أمور قانونية .. إلخ

آ. معالجة الخطر: Risk Handling

وهي العملية التي تتضمن تعريف، تقييم، اختيار وتطبيق واحدة أو أكثر من الاستراتيجيات المناسبة التي تساعد في جعل المخاطرة في حدودها المقبولة بحيث لا تعيق وصول المشروع إلى أهدافه. ومن أهم هذه الاستراتيجيات:

استراتيجية استبقاء المخاطر وافتراض وجودها: (ie: Retention Assumption) وفي هذه الاستراتيجية يقول مدير المشروع: أنا أعلم أن المخاطر موجودة وأنا مهتم بالتبعات المحتملة لهذه المخاطر، وسوف انتظر لأرى ماذا سيحدث وأنا أتقبل المخاطر التي ستظهر وسوف أواجهها.

استراتيجية المنع Avoidance: وهنا يقول مدير المشروع: أنا سوف لن أقبل هذا الخيار (القبول بالمخاطر وانتظار حصولها)، لأن هذا الخيار سوف يؤدي لظهور نتائج غير مرغوبة ولهذا سوف أقوم بعمل تغيير إما في التصميم أو المتطلبات بهدف تجنب حصول هذه المخاطر.

اسـتراتيجية التسـكين، المراقبـة (ie: Mitigation) Control: وهنـا يقـول مـدير المشـروع: أنـا سـوف اسـتخدم المقاييس الضرورية اللازمة لمراقبة المخاطر والسيطرة عليها وذلك من خلال إعداد خطة احتمالية Contingency Plan لمواجهة هذه المخاطر والسيطرة عليها.

استراتيجية التحويل (الترحيل) Transfer: وهنا يقول مدير المشروع: سأجعل الآخرين يشاركونني في تحمل المخاطر من خلال الكفالات التي أحصل عليها من المخاطر من خلال الكفالات التي أحصل عليها من الموردين والمنفذين الفرعيين وهنا أقوم بترحيل بتحويل كامل المخاطر عليهم بدلاً من أن أتعرض لها.

2. الرقابة على المخاطر Risk Control

وهي العملية التي يتم من خلالها التتبع المنتظم للمخاطر عن طريق تقييم الأداء للخطط والاستراتيجيات المستخدمة في معالجة المخاطر ومقارنتها بمقاييس محددة للتأكد من صحة هذه الاستراتيجيات ومدى صلاحيتها لمعالجة المخاطر ثم إجراء التصحيح اللازم من أجل تحقيق هذه الأهداف.

الأساليب الكمية في إدارة المخاطر في المشاريع

Quantitative Methods in Project Risk Management

معظم النماذج الكمية المستخدمة في إدارة المخاطر في المشاريع تعتمد على حساب معاملين اثنين هما العائد على المستخدمة في إدارة المخاطرة Risk factor. وقبل الخوض في تفاصيل حساب هذين العائد على الاستثمار الشروري الإشارة إلى أن حساب هذين العاملين سيكون في إحدى حالتين، إما حساب العائد والمخاطرة لبرنامج مشاريع مكون من حزمة من المشاريع، أو حسابها لمشروع واحد سواء أكان مشروعاً منفرداً أو كان عضواً في عينة مشاريع.

معدل العائد على الاستثمار Rate of Return

معدل العائد الفعلى على الاستثمار (Actual Rate of Return (معدل العائد الفعلى على الاستثمار)

إذا أشرنـا للمبلـغ المسـتثمر Invested Capital بـالرمز Cinv وأشرنـا إلـــى المبلـغ المتحقــق فـــي نهايــة فتــرة المشروع Returned Capital بالرمز Cret فإن معدل العائد الفعلـي في نهاية المشروع هــو: r =

3 ? 9 ..????

قام أحد المستثمرين باستثمار مبلغ وقدره 5 مليون دولار في برنامج مكون من 4 مشاريع، وكانت المبالغ المستثمرة في كل مشروع، والمبالغ المتحققة في نهاية كل مشروع كما هي في الجدول 9 🏿 9

جدول 9 🛚 9

بيانات مثال 9 🛚 4

المشروع Project	المبلغ المستثمر \$ Invested Capital Clnv	المبلغ المتحقق \$ Returned Capital CRet
А	500.000	550.000
В	1000.000	1.150.000
С	1.500.000	1.800.000
D	2000.000	2.300.000

المطلوب: احسب معدل العائد الفعلي على الاستثمار لكل مشروع من المشاريع الأربعة.

الحل:

يتم حساب العائد الفعلي حسب المعادلة 9 🏿 3 على النحو التالي:

500.000 🛚 550.000 rA =

rA = 0.1 rB = 0.15rC = 0.20

rD = 0.15

وبنفس الطريقة يكون

وهنا يتحدد العائد بمعرفة مكونين رئيسيين هما: احتمال ظهور العائد Probability of Occurrence (P) الناتج المتوقع لهذا الاحتمال Impact of Occurrence ويتم التعبير عنه بالمعادلة 9 1 والتي ذكرت سابقاً

Risk = f (Probability, Impact) 2222. 9 2 1

وعليه إذا افترضنا أن احتمالات ظهور العائد في الحالات الطبيعية المختلفة هي: P1, P2, P3 .. P1 . P2 . P1, P2, وأن العائد المتوقع في كل احتمال هو:

n .????? 3 ,2 ,1

فإن متوسط العائد المتوقع هو:

$$\hat{r} = r_1 p_1 + r_2 p_2 + r_3 p_3 + \dots + r_n p_n + \dots = 9 \rightarrow 4$$

$$\hat{r} = \sum_{i=1}^{n} r_i \, p_i$$

مثال 9 🛚 5

أعد قسم الدراسات في شركة عالم البلاستيك للصناعات الإنشائية دراسة حول ثلاثة مشاريع تنوي الشركة المفاضلة بينها. وقد كانت البيانات المتوفرة حول العوائد المتوقعة واحتمالات ظهورها كما هي في جدول 9 ¶ 10. فإذا علمت أن المبلغ المرصود لكل مشروع من هذه المشاريع هو 1 مليون ريال سعودي.

> جدول 9 ½ 10 مثال 9 ½ 5

Project المشروع	Description وصف المشروع	State of Market حالة السوق		
المسروع	وصف المسروع	\$ Good	\$ fair	\$ Weak
А	تطوير منتج جديد	400.000	200.000	(100.000)
В	شراء خط إنتاج جديد	500.000	200.000	(150.000)
С	القيام بحملة إعلانية ضخمة	200.00	100.000	0
Probability of occurance احتمالية الظهور		0.5	0.3	0.2

المطلوب:

حساب العائد المتوقع على الاستثمار لكل مشروع؟ أي المشاريع تنصح شركة عالم البلاستيك بتنفيذه؟

الحل:

لحساب العائد المتوقع لكل مشروع فإننا نقوم بجمع حاصل ضرب كل عائد متوقع في احتمال ظهوره، حسب المعادلة 9 ½ 4 كما يلى:

$$\hat{r} = r_1 p_1 + r_2 p_2 + r_3 p_3 + \dots + r_n p_n$$

وبتطبيق هذه المعادلة على المشاريع الثلاثة:

$$r_{A} = \frac{400.000 \times 0.5 + 200.000 \times 0.3 + (100.000) \times 0.2}{1000.000} = 24\%$$

$$r_{\rm B} = \frac{500.000 \times 0.5 + 200.000 \times 0.3 + (150.000) \times 0.2}{1000.000} = 28\%$$

$$r_{\rm C} = \frac{200.000 \times 0.5 + 100.000 \times 0.3 + (0) \times 0.2}{1000.000} = 13\%$$

من النتائج أعلاه فإن أفضل عائد على المشروع هو العائد على المشروع B، ولهذا أنصح شركة عالم البلاستيك للصناعات الإنشائية بشراء خط إنتاجي جديد.

متوسط العائد Average Rate of Return rav

وهو الوسط الحسابي لمجموع عوائد المشاريع في البرنامج، ويشار إليه بالمعادلة التالية:

$$r_{av} = \frac{\sum_{i=1}^{n} r_i}{n} \qquad ... \qquad 9 \rightarrow 5$$

مثال 9 🛚 6

إذا كان معدل العائد على الاستثمار للمشاريع C, B, A على التوالي 0.10, 0.15, 0.10، فالمطلوب حساب متوسط العائد على المشاريع الثلاثة معاً.

الحل: باستخدام المعادلة 9 🛭 5 فإن متوسط العائد على الاستثمار على المشاريع الثلاثة هو:

$$r_{av} = \frac{\sum_{i=1}^{3} r}{3}$$

$$r_{av} = \frac{0.11 + 0.15 + 0.1}{3} = 0.12$$

متوسط العائد الموزون Weighted Average Rate of Return متوسط العائد الموزون

إذا كان لدينا برنامج مكون من عدد n من المشاريع وكانت نسبة المبالغ المستثمرة في كل مشروع إلى إدا كان لدينا برنامج (الوزن النسبي) هي: س . الله وكان العائد على الاستثمار لكل يحمالي الاستثمار في البرنامج (الوزن النسبي) هي: ٢٥ ـ ١٦ فإن العائد الموزون للبرنامج ككل سه هو:

$$r_w = r_1 w_1 + r_2 w_2 + r_3 w_3 + \dots + r_n w_n \dots 9 \rightarrow 6$$

$$r_{w} = \sum_{i=1}^{n} r_{i} w_{i}$$

مثال 9 🛚 7:

بالرجوع للمثال 9 🛭 4، احسب معدل العائد الموزون لكل مشروع على حدة، ثم احسب العائد الموزون للبرنامج ككل.

الحل:

بالرجوع إلى البيانات في المثال 9 🏿 4، نقوم بالحل باتباع الخطوات التالية:

نحدد الوزن النسبي للمشروع في البرنامج وذلك عن طريق قسمة المبلغ المستثمر في المشروع على المبلغ الإجمالي المستثمر في البرنامج.

$$\mathbb{W}_{\text{A}} = 0.1$$
 5.000.000

وهكذا، تجد بقية النتائج في جدول 9 🛚 11

نقوم بضرب الوزن النسبي للمشروع في معدل العائد للمشروع كما تم حسابه سابقاً:

$$=W_{A} ? r_{A}$$
 $= 0.7 ? 0.7$
 $= 0.07$

وهكذا تجد بقية النتائج في جدول 9 🛚 ١٦

نقوم بجمع حاصل ضرب وزن كل مشروع في معدل العائد عليه حسب المعادلة 9 🛚 6:

$$\Gamma_{\text{Wprog}} = \Gamma_{\text{Ax}} W_{\text{A}} + \Gamma_{\text{Bx}} W_{\text{B}} + \Gamma_{\text{Cx}} W_{\text{C}} + \Gamma_{\text{Dx}} W_{\text{D}}$$

= 0.1 ? 0.1 + 0.15 ? 0.2 + 0.2 ? 0.3 + 0.15 ? 0.4

= 0.16

جدول 9 🛚 11

حل مثال 9 🛚 7

المشروع Project	الوزن النسبي Weight Average W	معدل العائد Rate of Return R	معدل العائد الموزون Weighted rate of Return r : W
А	0.10	0.10	0.01
В	0.20	0.15	0.03
С	0.30	0.20	0.06
D	0.40	0.15	0.06
البرنامج Programme	1.00		0.16

معامل المخاطرة Risk factor

المخاطرة كما تم تعريفها في فقرة سابقة هي تبعات وعواقب الانحراف عن الوصول للأهداف المرسومة، وعليه فإن حساب المخاطرة يحتاج لمعرفة كمية الانحراف في العائد الفعلي للمشروع عن معدل العائد المتوقع كما في المعادلة التالية:

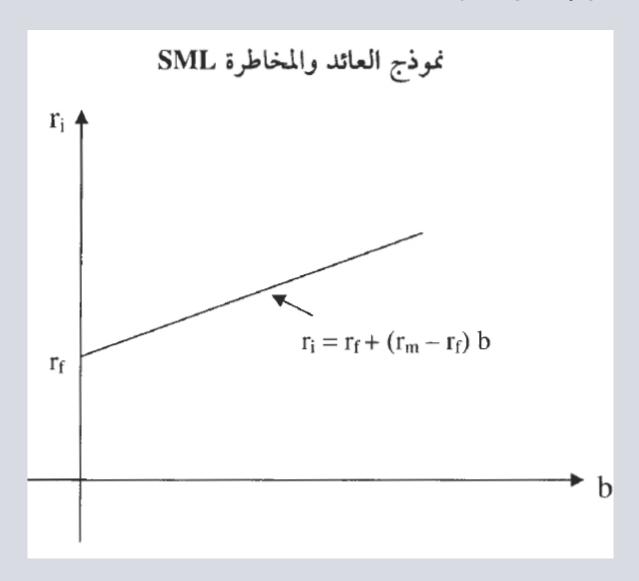
Diviation = (r; ?r) ???????. 9?7

وبالاعتماد على هذا المفهوم فإن هناك عدة طرق لحساب معامل المخاطرة في المشاريع.

تباين العائد على البرنامج (مجتمع مشاريع عددها (N

Variance of Programme Rate of Return

ويرمز له بالحرف الأتيني ويتم التعبير عنه رياضياً حسب المعادلة التالية:


نموذج العائد والمخاطرة Risk and Return Model

ويسمى أيضاً Linear Relationship وهو نموذج يمثل علاقة خطية (Security Market Line Model (SML) بين العائد المطلوب Risk factor ويرمز له أ، ومعامل المخاطرة Risk factor بيتا ويرمز له أ. وحتى العائد النموذج بطريقة ناجحة لابد من معرفة معدل العائد على السوق m بالإضافة إلى معدل العائد على السوق m بالإضافة إلى Aisk free Rate of Return ويحسب على أساس العائد على السندات الحكومية وذلك لأن سدادها مضمون وخالي من المخاطر لأنها مكفولة من الحكومة. ويتم التعبير عن العلاقة الخطية بين العائد المطلوب in والمخاطرة b في النموذج SML بالمعادلة التالية:

 $\Gamma_{i} = \Gamma_{f} + (\Gamma_{m}?\Gamma_{f})???..???..9?75$

وقد تم اشتقاق هذه المعادلة والتعبير عن النموذج الخطي SML كما في الشكل 9 🛚 3: شكل 9 🗈 3

نموذج العائد والمخاطرة SML

إذا علمت أن معدل العائد في سوق المشاريع الإنشائية = 0.12 وإن معدل العائد على السندات الحكومية = 0.04 احسب معدل العائد المطلوب على مشروع إنشائي له معامل مخاطرة 1.5 = b

الحل: بتطبيق المعادلة نحصل 9 🏿 15 على معدل العائد المطلوب

$$\Gamma_i = \Gamma_f + (\Gamma_m ? \Gamma_o) b$$

$$r_i = 0.04 + (0.12 ? 0.04) ? 1.5$$

$$r_i = 0.04 + 0.08 ? 1.5$$

$$r_i = 0.16$$

المرجع:

كتاب : إدارة المشاريع المعاصرة Contemporary Project Management ، منهج متكامل في إدارة المشاريع ، من تأليف د. موسى أحمد خير الدين، من إصدار دار وائل للنشر ، الطبعة الثانية 2014 .