

تعتــبر طريقــة المخطــط الشبكــي (Network Diagram) Method) إحدى الطرق الحديثة نسبياً في إدارة المشاريع

2024 July 20, 2024 الكاتب : د. محمد العامري عدد المشاهدات : 4337

أساسيات فى المخططات الشبكية

تعتبر طريقة المخطط الشبكي (Network Diagram Method) إحدى الطرق الحديثة نسبياً في إدارة المشاريع، التي ظهرت نتيجة لحاجات عجزت عن تلبيتها الطرق التي سبقتها، ونخص بالذكر طريقتين مخطط جانت والمخططات الانسيابية.

في أواخر الخمسينات من القرن الحالي (1957 © 1958) ظهرت طريقة المخطط السهمي أو ما سمي في ذلك الوقت بطريقة المسار الحرج (Critical Path Method © CPM) كما وظهرت طريقة تقييم ومراجعة البرنامج (Program Evaluation & Review Technique) كأســلوبين لإدارة المشــاريع واعتمــدت هــاتين الطريقتيــن فـــي تمثيل المشروع على أسلوب النشاط على السهم.

هناك طرق عدة لرسم الشبكة الممثلة للمشروع في علم إدارة المشاريع أهمها طريقة المخطط السهمي (Arrow Diagramming Method © ADM) التي تستخدم السهم لتمثيل النشاط أي يكون النشاط على السهم (Procedure Diagramming Method PDM) بينمـــا طريقـــة المخطـــط التصـــدري (Activity on Arow © AOA)

تستخدم العقدة أو الخانة أو الدائرة أو المربع لتمثيل النشاط أي يكون النشاط داخل الخانة (Activity on Node أي محدم العقدة أو الحائرة أو المربع لتمثيل النشاط أي يكون النشاط داخل الخانة (AON آ).

واجهت طريقة تمثيل النشاط بسهم بعض الصعوبات وخصوصاً فيما يتعلق بتمثيل النشاطات الوهمية حيث أن الاستخدام الخاطئ للنشاطات الوهمية في الشبكة قد يؤدي إلى تمثيل خاطئ للعلاقة بين النشاطات. فمن الممكن أن يؤدي الاستخدام الخاطئ للنشاط الوهمي إلى اعتماد نشاط ما على نشاط آخر دونما حاجة أو الممكن أن يؤدي الاستخدام الخاطئ للنشاط الوهمي إلى اعتماد نشاط ما على نشاط آخر دونما حاجة أو جعل نشاط غير حرج نشاطاً حرجاً أو العكس، كما أن النشاطات الوهمية قد تزيد من تعقيد الشبكة والحسابات المتعلقة بها. وجاء ظهور طريقة المخطط التصدري على أيدي جون فوندال (John fondohl) عام 1961 كحل للمشاكل المتعلقة بالنشاطات الوهمية حيث تميزت هـذه الطريقة بعدم الحاجة إلى النشاطات الوهمية (محمد الجار الله)، (Harris) وقدرتها على إبراز التداخل بين النشاطات بطريقة أفضل كما.

أهمية استخدام المخططات الشبكية

تعود أهمية استخدام طريقة المخططات الشبكية كإحدى التقنيات الإدارية الحديثة إلى العديد من الجوانب من أهمها ما يلى:

- -) وضوح علاقة النشاطات المختلفة في المشروع ببعضها من حيث التتابع والتزامن.
- 2) إمكانية استخدام مفهوم النشاط الوهمي في طريقة المخطط السهمي أو النشاطات المتداخلة في طريقة المخطط التصدرى للتحكم بتوقيت بدء النشاط المقيد بزمن محدد أو نشاط سابق.
- 3) سهولة العمليات الحسابية المستخدمة خصوصاً عندما تكون الشبكة لمشروع يحتوي على نشاطات عديدة.
- 4) استخدام نظام ترقيم للدلالة على النشاطات يعطي مرجعاً سهلاً للعمليات الحسابية سواء كانت هذه الحسابات يدوية أو كانت باستخدام الحاسوب.
 - 5) إظهار تأثير تأخر نشاط معين في المشروع في باقي نشاطات المشروع أو في المشروع ككل.
 - 6) القدرة على متابعة ومراقبة التنفيذ بدقة حسب الجدول الزمنى لكل نشاط.
- 7) إمكانيـة تحويـل المخطـط السـهمي إلـى مخطـط ذي مقياس زمنـي يجمـع مخطـط جانت سابق الذكر والمخطط السهمى.
- 8) إمكانية توزيع العمل بعد توضيحه وتفصيله على الدوائر المختلفة مما يؤدي إلى فاعلية وكفاية في تنفيذ ومراقبة المشروع.
 - و) إن الشبكة وبعد وضع كافة المعلومات تعتبر مصدراً للمعلومات وأساساً لعملية إعادة التخطيط.

العلاقات المنطقية

في طريقة المخطط السهمي يمثل النشاط (Activity) بسهم (Arrow) يصل بين حدثين (Events)، حيث إن طول السهم الممثل للنشاط ليس له أي معنى مرتبط بالمدة الزمنية اللازمة لتنفيذ هذا النشاط. وكما وسيأتي فإن هذا الخط (السهم) يمكن أن يأخذ أي شكل كأن يكون منحنى أو زاوي الشكل أو مستقيماً لأن طبيعة إنشاء الشبكة قد تتحكم في شكل المخطط الشبكي لتلائم النموذج الإداري المقترح.

إن أي نشاط له بداية ونهاية محددتين، ويعبر عن ذلك من حيث الارتباط الإداري والتنظيمي بالنشاطات السابقة أو اللاحقة من خلال الفواصل الموجودة على الشبكة، وهذه الفواصل أو الأقطاب هي ما يطلق عليه اسم حدث (Event)، والذي يعبر عن لحظة زمنية بين انتهاء النشاط السابق وبداية النشاط اللاحق، ولا تستفرق زمن، أنها عبارة عن فاصل زمنى لحظى بين الزمن الحقيقى للنشاطات.

وتختلف طريقة رسم المخطط التصدري عن المخطط السهمي حيث يتم تمثيل النشاط باستخدام عقدة أو

خانة (Node) أقد تكون دائرة أو مربع مثلاً أو وتحتوي على المعلومات المتعلقة بالنشاط، كاسم النشاط ورمزه والأوقات المبكرة والمتأخرة، بينما تمثل الوصلات (Links) التي تربط بين هذه النشاطات بخطوط (Lines). على العكس من المخطط السهمي حيث يمثل النشاط فيها بسهم بين حدث بداية النشاط وحدث نهاية النشاط وتظهر العلاقة بين هذه النشاطات من خلال ترتيبها في المخطط.

قواعد رسم المخططات الشبكية

هناك أعراف يجب مراعاتها عند رسم المخططات الشبكية سواء باستخدام طريقة النشاط على السهم أو النشاط داخل الخانة، من أهمها ما يلى:

- 2. في طريقة المخطط التصدري يكون هناك نقطة بداية واحدة ونقطة نهاية واحدة بغض النظر عن عدد نشاطات البداية أو النهاية.
 - 3. الرسم دائماً باتجاه واحد أى أن تدفق الوقت باتجاه واحد.
- 4. عند الترقيم يجب مراعاة أن يكون رقم النهاية أكبر من رقم البداية، أي رقم النشاط اللاحق أكبر من رقم النشاط السابق.
 - لا يمكن البدء بأى نشاط معين قبل الانتهاء من جميع النشاطات السابقة التى تنتهى فيه.
 - 6. يجب أن لا يكون هناك أكثر من نشاط واحد له نفس الوصف ويؤدي نفس العمل.
- 7. في طريقة المخطط السهمي يوضع اسم أو رقم أو رمز النشاط فوق السهم وتوضع مدة النشاط تحت السهم الذي يمثله، بينما توضع بيانات النشاط داخل الخانة في طريقة المخطط التصدري.
 - 8. لكل نشاط في المشروع رقم فريد غير مكرر.

يبين الفريق في تمثيل النشاطات لكل من طريقة المخطط السهمي وطريقة المخطط التصدري.

أسئلة التقويم الذاتي (٦):

- اناقش أهمية استخدام المخططات الشبكية في إدارة المشاريع.
 - 2- ما المقصود بالعلاقات المنطقية؟
- 3- ما الفـرق بيـن فـي تمثيـل المخطـط الشبكـي باسـتخدام طريقـة المخطـط السـهمي وطريقـة المخطـط التصدرى؟
 - 4- اذكر أهم قواعد رسم المخططات الشبكية.

طريقة المخطط السهمى

كما ذكرنا في طريقة المخطط السهمي فإن النشاط يمثل بسهم يصل بين حدثين وهذا الخط (السهم) يمكن أن يأخذ أي شكل كأن يكون منحنى أو زاوي الشكل أو مستقيماً لأن طبيعة إنشاء الشبكة قد تتحكم في شكل المخطط الشبكي، يمثل العلاقة بين النشاط والحدث.

بناء المخطط السهمي

عزيزي القارئ بعد تقسيم المشروع إلى مجموعة النشاطات اللازمة لتنفيذه وإعداد قائمة النشاطات الخاصة به، مع بيان العلاقة ما بين النشاطات وما هي النشاطات التي يجب أن تنتهي قبل البدء في كل نشاط، نقوم بإعداد المخطط السهمي الذي يمثل المشروع.

لا توجد طريقة محددة لبناء هذا المخطط، إنما يوجد ثلاث تقنيات لإنشاء المخطط السهمي للمشروع اعتماداً على عدد النشاطات في الشبكة وعلى طبيعة العلاقة بين هذه النشاطات وهي:

- 1- أن يبدأ بوضع حدث البداية للمشروع، ومن ثم وضع النشاط المنبثق عن هذا الحدث، بعد ذلك يوضع حدث النهاية عند رأس النشاط، ليكون حدث البداية للنشاط اللاحق وهكذا حتى آخر نشاط وتسمى هذه الطريقة بطريقة الحدث البادئ.
- 2- هذه الطريقة تدعي بطريقة الحدث المنتهي، حيث يتم وضع حدث النهاية للمشروع، ومن ثم يضاف له النشاطات الداخلة على تلك النشاطات الداخلة على الله على الله على الأحداث وهكذا حتى نصل حدث بداية المشروع.
- 3- تدعى هذه الطريقة بطريقة النشاط المستقل، حيث يبدأ المخطط بوضع النشاطات نفسها بشكل مبدئي، من حيث الاعتمادية على بعضها البعض، وبعد ذلك يتم وضع الأحداث الداخلية لتكون الفواصل بين النشاطات. من الخبرة لوحظ استخدام النشاطات الوهمية بكثرة في هذه الطريقة، ومن الواجب عند إعداد الشبكة النهائية التخلص من النشاطات الوهمية الزائدة.

إن استخدام أي من الطرق السابقة يعتمد في الدرجة الأولى على رغبة الشخص الذي يقوم بتمثيل المخطط السهمى، حيث أن النتيجة واحدة فى كل الأحوال.

المخطط السهمى ذو المقياس الزمنى

تعرضنا في الوحدة السابقة إلى مخطط جانت، وتعرفنا على أسباب قصوره في أداء مهمته في إدارة المشاريع التي من أهمها عدم القدرة على إظهار علاقة النشاطات المختلفة ببعضها. وبعد ظهور المخططات السهمية ظهرت المخططات السهمية ذات المقياس الزمني (Time Scalled Network) التي حاولت الجمع بين أسلوب مخطط جانت وأسلوب المخططات السهمية في تمثيل المشاريع. الشكل (8 ﴿ 8) يبين أوجه التشابه بين كل من مخطط جانت في الشكل (6 ﴿ 8 ﴿ 1) والمخطط السهمي في الشكل (6 ﴾ 9 ﴿ 1) بعد إعطاء المقياس الزمني في الشكل (6 ﴾ 9 ﴿ 2)، لنفس المشروع الذي تحدثنا عنه في التدريب رقم (1) بعد إعطاء أوقات للنشاطات.

عند التدقيق في النظر إلى الشكل (6 🏿 3ج) نلاحظ ما يلي:

- آ. يحتوي المخطط على محور أفقي يمثل الزمن ذلك لأن طول السهم في الشبكة السهمية ذات المقياس
 الزمنى يدل على زمن النشاط الذى يمثله كما فى مخطط جانت.
- 2. يتكون المخطط من عنصرين رئيسيين هما الأسهم وتمثل النشاطات والدوائر وتمثل الأحداث حيث إن المخطط السهمية.
- 3. بعض الأسهم رسمت بنوعين من الخطوط: جزء رسم بخط متصل كما في الشبكات السهمية، وجزء آخر رسم بخط متقطع كالخطوط التي ترسم بها النشاطات الوهمية حيث يمثل الجزء المرسوم بخط متصل زمن النشاط، ويمثل الجزء المرسوم بخط متقطع قيمة المرونة لذلك النشاط، وسنتحدث عن المرونة بأنواعها في جزء لاحق من هذا الفصل، ويدعى النشاط المرسوم بنوعين من الخطوط بالنشاط غير الحرج، بينما يدعى النشاط المرسوم بخط متصل بالنشاط الحرج.
- 4. عند محاولة الوصول من حدث بداية المشروع إلى حدث نهايته نجد أن هناك أكثر من مسار يصل بين هذين الحدثين. بعض هذه المسارات تحتوي على نشاطات غير حرجة وتسمى بالمسارات غير الحرجة، بينما نجد مساراً واحداً على الأقل يتكون من نشاطات جميعها حرجة، ويسمى بالمسار الحرج.

أسئلة التقويم الذاتي (2)

- اذكر طرق بناء المخطط السهمى.
- 2- ما الفرق بين المخطط السهمى، ومخطط جانت والمخطط ذو المقياس الزمنى؟
 - 3- ما هي أهم صفات المخطط ذو المقياس الزمني؟
- ·- ارسم المخطط الشبكي السهمي للأجزاء المختلفة للشبكات التالية والتي يمكن وصفها بما يلي:
 - 4-1) النشاط (ج) والنشاط (د) يعتمدان على كل من النشاطين (أ) و(ب).
 - 4 🛚 2) النشاط (ج) يعتمد على النشاطين (أ) و (ب) والنشاط (د) يعتمد على النشاط (ب).
 - 4- 3) النشاط (ج) يعتمد على النشاط (أ) والنشاط (د) يعتمد على النشاطين (أ) و(ب)
- 4 🛚 4) النشاط (د) یعتمد علی کل من النشاطین (أ) و(ج) والنشاط (هـ) یعتمد علی کل من النشاطین (ب) و(ج)
- 4-5) النشاط (د) يعتمد على كل من النشاطين (أ) و(ج) والنشاط (هـ) يعتمد على كل من النشاطين (ب) و(ج) والنشاط (و) يعتمد على النشاط (ج).
- 4 🛭 6) النشاط (د) یعتمد علی النشاطین (أ) والنشاط (هـ) یعتمد علی النشاط (ب) والنشاط (و) یعتمد علی کل من النشاطات (أ) و (ب) و (ج).
- 4- 7) النشاط (د) يعتمد على النشاط (أ) والنشاط (هـ) يعتمد على كل من النشاطين (أ) و(ب) والنشاط (و) يعتمد على كل من النشاطين (ب) و (ج).
- 4 🛭 8) النشاط (د) يعتمد على النشاط (أ) والنشاط (هـ) يعتمد على كل من النشاطين (أ) و(ب) والنشاط (و) يعتمد على كل من النشاطات (أ) و(ب) و(ج).

طريقة المخطط التصدري

كما ذكرنا يمثل النشاط في طريقة المخطط التصدري بعقدة أو خانة وسوف نستخدم المربع للدلالة على ذلك. يعرف النشاط بالاسم أو الرمز أو الرقم حيث توضع معلومات النشاط داخل المربع وهي: رقم النشاط واسم النشاط أو رمزه وزمن النشاط ووقت البداية المبكر (و ب ب) ووقت البداية المتأخر (و ب ت) ووقت النهاية المتأخر (و ن ت).

بناء المخطط التصدري

بعد إعداد قائمة النشاطات مع توضيح العلاقة الاعتمادية بين النشاطات آ بيان النشاطات السابقة لكل نشاط في المشروع آ نقوم بتحديد نشاطي بداية ونهاية المشروع؛ النشاط الذي يبدأ به المشروع والنشاط الذي ينتهي به المشروع. في حالة وجود أكثر من نشاط بداية أو أكثر من نشاط نهاية للمشروع، نقوم بإضافة دائرة لتمثل بداية المشروع أو نهاية المشروع ثم نقوم بإعادة ترتيب قائمة النشاطات بحيث تكون دائرة البداية للمشروع في رأس القائمة ودائرة نهاية المشروع في آخرها، ثم نرتب باقي النشاطات حسب أرقامها أو تسلسل رموزها أو أي ترتيب آخر مناسب.

تدریب (2):

عزيزي القارئ ارجع إلى التدريب رقم (٦) وحاول أن تمثل النشاطات المختلفة لمشروع إقامة المصنع باستخدام طريقة المخطط التصدري.

أسئلة التقويم الذاتي (3)

التصدري السم المخطط التصدري ارسم المخطط الشبكي للأجزاء المختلفة للشبكات التالية والتي

- يمكن وصفها بما يلى:
- (٦-١) النشاط (ج) والنشاط (د) يعتمدان على كل من النشاطين (أ) و(ب).
- (٦ 🛭 2) النشاط (ج) يعتمد على النشاطين (أ) و (ب) والنشاط (د) يعتمد على النشاط (ب).
 - (۱- 3) النشاط (ج) يعتمد على النشاط (أ) والنشاط (د) يعتمد على النشاطين (أ) و(ب)
- (۱ 🛚 4) النشاط (د) یعتمد علی کل من النشاطین (أ) و(ج) والنشاط (هـ) یعتمد علی کل من النشاطین (ب) و(ج)
- (1-5) النشاط (د) يعتمد على كل من النشاطين (أ) و(ج) والنشاط (هـ) يعتمد على كل من النشاطين (ب) و(ج) والنشاط (و) يعتمد على النشاط (ج).
- (۱ 🛭 6) النشاط (د) يعتمد على النشاطين (أ) والنشاط (هـ) يعتمد على النشاط (ب) والنشاط (و) يعتمد على كل من النشاطات (أ) و (ب) و (ج).
- (۱- 7) النشاط (د) يعتمد على النشاط (أ) والنشاط (هـ) يعتمد على كل من النشاطين (أ) و(ب) والنشاط (و) يعتمد على كل من النشاطين (ب) و (ج).
- (۱ 🛭 8) النشاط (د) یعتمد علی النشاط (أ) والنشاط (هـ) یعتمد علی کل من النشاطین (أ) و(ب) والنشاط (و) یعتمد علی کل من النشاطات (أ) و(ب) و(چ).

النشاطات السلمية/ المتكررة

عزيزي الدارس توضح الأمثلة التي تناولنا نوعين من العلاقات، الأولى علاقات النشاطات المتتابعة؛ أي تلك النشاطات التي تنفيذها في نفس الـوقت لأنها تعتمـد على بعضها، والثانيـة علاقـة النشاطات المتزامنة؛ أي التي نستطيع تنفيذها في نفس الوقت لأنها لا تعتمد على بعضها.

ولكن في الواقع العملي قد يصادفنا نوع آخر من النشاطات المتكررة المتشابهة التي تتطلب قبل إجرائها أن يكون قد تم إنجاز جزء من نشاط سابق أيضاً متكرر ومتشابه، وليس كل النشاط. مثل هذه المشاريع مشروع شق طريق ذو طبيعة متشابهة أو بناء مجموعة من البنايات المتشابهة أو فتح مجموعة فروع متشابهة لمؤسسة ما في مناطق مختلفة.

قد يكون الحل الأكثر قبولاً تجزئ العمل في المشروع إلى أجزاء كل منها يعتمد على الانتهاء من العمل في الجزء السابق بحيث تنتقل فرق العمل من جزء إلى آخر حسب مخطط مدروس يضمن الاستخدام الأفضل للموارد حيث لا تبقى الموارد معطلة إلا في أقل حدود ممكنة. ولكي تمثل المخططات الشبكية مثل هذا التجزئ للنشاطات في الواقع نقوم أيضاً بتجزئ النشاطات حيث ينتهي شكل المخطط إلى شكل يسمى شكلاً متكرراً وسلمياً (Ladder/ Repetitive Network)، وتسمى النشاطات المكونة له بالنشاطات المتكررة (Ladder Activities) أو السلمية (Activities).

تدریب (3)

المشروع المطلوب تنفيذه هو شق طريق طوله 20 كيلو متر ذو طبيعة متشابهة ويتضمن العمل القيام بثلاثة أنواع من النشاطات يقوم بكل واحد منها فريق عمل منفصل، وهذه النشاطات هي:

أ- تمهيد الطريق: حيث يتطلب تمهيد الكيلو متر الواحد من قبل فريق العمل المختص يوم عمل مثلًا.

ب- رصف الطريق: حيث يتطلب رصف الكيلو متر الواحد من قبل فريق المختص المختصين يومين مثلاً.

ج- تعبيد الطريق: حيث يتطلب تعبيد الكيلو متر الواحد من قبل فريق العمل المختص أربعة أيام مثلاً علماً بأن الفرق العمل المشار إليها متفرغة كلياً لهذا المشروع وقد كانت توصية الشركة المصممة تقسيم المشروع إلى أجزاء متشابهة طول كل منها خمسة كيلو مترات.

أسئلة التقويم الذاتي (4)

- ٦- ما هي أنواع العلاقات التي تستخدم لتمثيل المخططات الشبكية؟
 - 2- ما المقصود بالمخطط المتكرر؟ متى يستخدم؟ ناقش.
 - 6. التحليل الشبكى كأساس لإعادة التخطيط:

إن استخدام النماذج الشبكية في إدارة المشاريع أثبتت جدواها على مدى الفترة الماضية كنظام متكامل Complete Project) وخصوصاً في المشاريع الكبيرة حتى أصبح يطلق على هذا العلم إدارة المشروع الكاملة (Management © CPM). وتبرز أهمية التحليل الشبكي كنظام في قدرته على التخطيط للمشروع من بدايته ومراقبته ومتابعته وإعادة تخطيطه أثناء تنفيذه وحتى تسليمه.

قبل الخوص في تفاصيل مراحل التحليل الشبكي واستخدامه لإعادة التخطيط دعنا نتعرض لمفهوم النظام الشبكي. تستعمل كلمـة نظـام (System) للتعـبير عـن مجموعـة مـن النشاطـات (Activities) أو الوظـائف (الشبكـي. اللازمة لإنجاز هدف محدد، ففي حالة المخططات السهمية المخطط عبارة عن نظام يتكون من نشاطات ويعبر عن كل نشاط بسهم (Arrow)، تفصيل بينها أحداث (Events) على شكل دوائر، وهذه النشاطات تكون من تظهر علاقة النشاطات بعضها ببعض. أما في حالة المخططات التصديرية فالنظام يتكون من نشاطات ويعبر عن كل نشاط بخانة (Node)، مربع أو دائرة تربط بينها الوصلات (Links) لإظهار علاقة هذه النشاطات بعضها ببعض؛ وعليه يمكن القول إن المخططات السهمية أو التصديرية عبارة عن نظم.

تمـر عمليـة التحليـل الشبكـي للمشـروع مـن بـدايته حتـى نهـايته بثلاث مراحـل رئيسية هـي: مرحلـة التخطيـط والتنظيم، ومرحلة الجدولة، ومرحلة المراقبة، لذا دعنا عزيزي الطالب نصف بإيجاز كلاً من هذه المراحل.

أولًا 🛭 مرحلة التخطيط والتنظيم

يتم خلال هذه المرحلة دراسة المشروع ووضع الخطط الكفيلة بتنفيذه من خلال المعطيات المتوفرة ثم تحديد قائمـة النشاطات (Activity List) وهيكـل تقسيم العمـل (Work Breakdown Structure © WBS). فـي هـذه المرحلة يجب تحديد الزمن (Duration) والموارد (Resources) اللازمة لتنفيذ هذا النشاط ثم نرسم المخطط الذمي يمثل المشروع.

ثانياً 🛭 مرحلة الجدولة

نقوم في هذه المرحلة بتحليل المخطط من أجل معرفة الأوقات الأربعة ومقدار مرونة (Float) كل نشاط ومعرفة المسار أو المسارات الحرجة (Critical Paht)، والزمـن الـذي سيستفرقه تنفيـذ المشـروع (Duration). ثـم نقـوم بدراسـة كلفـة المشـروع، وتأثير زيـادة أو اختصار زمـن النشاطات المختلفـة فـي كلفـة المشروع، وأثر ذلك في مدة المشروع، للوصول إلى أنسب وقت وكلفة للمشروع، بعد ذلك نقوم بجدولة الموارد المتاحة للمشروع من أجل تنفيذه خلال الوقت والكلفة المحددين، ووضع المخططات النهائية بناء على ذلك.

في حالة الحاجة إلى تغيير أي من البيانات نلاحظ الحاجة إلى العودة إلى مرحلة التخطيط وإعادة التخطيط. ثالثاً 🏽 مرحلة المراقبة

بعد وضع الخطة النهائية للمشروع ننتقل إلى مرحلة التنفيذ (Implementation)، حيث يتم تنفيذ ما تم التخطيط له وجدولته خلال المرحلتين السابقتين. إن الهدف من المراقبة (Control) في مرحلة التنفيذ هو ضمان تنفيذ ما تم تخطيطه وجدولته من أجل الوصول إلى الهدف النهائي للمشروع، وتتم عملية المراقبة عن طريـق متابعـة المشروع للحصـول علـى معلومـات ميدانيـة عـن تقـدم العمـل ثـم مقارنـة وتقييـم هـذه المعلـومات مع الخطة الموضوعة للمشروع.

في حالة وجود أي انحرافات يجب دراسة وتقييم هذا الانحراف والتنبؤ بتأثيره في المشروع كوحدة واحدة ثم العمل على تصحيح هذا الانحراف وتقليل تأثيره بقدر الإمكان في المدة والكلفة والمواصفات للمشروع حتى إذا اقتضى ذلك إعادة التخطيط كما هو مبين في الشكل، ويتم توثيق جميع هذه المعلومات حتى نهاية المشروع.

تقدير أوقات و/ أو الكلف المصاحبة للنشاطات المختلفة

عزيزي القارئ إن تقسيم المشروع إلى النشاطات أو العمليات المكونة له يختلف من مشروع إلى آخر ويعتمد على المعرفة والخبرة السابقة، ففي المشاريع الصغيرة حيث تكون العمليات بسيطة نجد أن تقسيم المشروع إلى نشاطات عملية سهلة، وكلما كبر المشروع زادت النشاطات والموارد المطلوبة من أجل تنفيذ هذه النشاطات، وزادت مراحل التنفيذ وزمن التنفيذ.

كما ذكرنا في الوحدة الرابعة فإننا نقسم المشروع إلى نشاطات ونعرف كل نشاط بالتفصيل ونحدد له الوقت المتوقع اللازم والكلفة المناسبة بإحدى الطرق التالية:

- اعتماداً على مشاريع سابقة مشابهة للمشروع قيد الدراسة حيث نعتمد في مثل هذه المشاريع على
 الإحصائيات السابقة والمعلومات المخزونة كما في المشاريع المتكررة مثل مشاريع المباني ودراسات الجدوي.
- 2. اعتماداً على خبراء في مجال المشروع قيد الدراسة بحيث يكونوا على علم ودراسة بالمشروع والمطلوب وعلى مستوى عال من الخبرة.
- قي المشاريع الجديدة التي لا يوجد لها سابقة ولم تنفذ من قبل مثل مشاريع البحث والتطوير وفي حالة استخدام طريقة تقييم ومراجعة البرنامج نحصل على الوقت المتوقع بعد الحصول على تقدير لأوقات النشاط الثلاثة التفاؤلي والأكثر احتمالاً والتشاؤمي المناط من الخبراء ونقوم بحساب الوقت المتوقع لإنهاء النشاط باستخدام المعادلة التالية:

اً + 4 (م) + ب

الوقت المتوقع للنشاط =

6

حيث أن:

الزمن التفاؤل 🏿 (أ) (aptirnistic Time 🖾 a)) هو الزمن المتوقع لتنفيذ النشاط عندما تكون ظروف تنفيذ النشاط مثالية، ولا يحتمل تنفيذ النشاط في وقت أقصر.

الزمـن الأكثـر احتمـالًا 🛽 (م) (Probable Time 🖟 m) متوقـع لتنفيـذ النشاط عنـدما تكـون ظـروف تنفيـذ النشاط طبيعيـة وجيدة ولكن ليست مثالية.

الزمــن التشــاؤمــي ﴿ (ب) (Pessimistic Time ﴿ وَهــو الزمــن المتوقــع لتنفيــذ النشــاط عنــدما تكــون ظــروف التنفيـذ سيئة وهــو الوقت الأطـول، ولا تـدخل هنا الظروف غير الطبيعية أو الكـوارث مثل الزلازل والفيضانات وما إلــم ذلك.

طريقـة تقييـم ومراجعـة البرنـامج (Program Evaluation & Review Technique) مبنيـة علـــ أســس إحصائيـة حيث الوقت المتوقع لإنهاء نشاط ما هو إلا عبارة عن الوسط لأوقات النشاط الثلاثة 🛚 التفاؤل والأكثر احتمالاً والتشاؤمي. إن طريقة تقييم ومراجعة البرنامج قد وجدت من أجل المشاريع غير المتكررة التي لا يوجد مشاريع

مشابهة لها، وغالباً ما تكون في مواضيع متخصصة جداً كما أن التجارب العملية أثبتت الدقة المبنية لهذا الوسط الحساس.

أسئلة التقويم الذاتي (5)

- ما المقصود بنظام التحليل الشبكى؟ هل هو نظام حقاً؟ ناقش.
 - ٥- كيف يمكن استخدام نظام التحليل الشبكي لإعادة التخطيط؟
 - 3- ما هي طرق تقدير الوقت للمشروع؟
- 4- ما المقصود بطريقة تقييم ومراجعة البرنامج؟ متى تستخدم هذه الطريقة في إدارة المشاريع؟

إيجاد الوقت اللازم للمشروع

الهدف من إيجاد الوقت اللازم للمشروع هو إعطاء متخذ القرار (Decision Moker) مختلف المعلومات منها ما هو متعلق بالنشاطات المكونة للمشروع. وللحصول على المعلومات المطلوبة هناك العديد من العمليات الحسابية التي يجب تطبيقها على المخطط الشبكي بعد إنشائه، ومن الفوائد التى نجنيها من تطبيق هذه العمليات الحسابية على المخطط:

أولًا 🛭 على صعيد المشروع ككل:

- 1) متى سينتهى المشروع كاملاً.
- 2) ما هـي النشاطات الحرجـة (Critical Activities)، أي التـي تـؤثر فـي نهايـة المشـروع فـي حالـة تأخرهـا وبالتالى يجب الحرص على زمن بداية ونهاية هذه النشاطات.
- 3) النشاطات غير الحرجة، أي التي لا تؤثر في نهاية المشروع فيما لو تأخرت بمقدار زمني معين يتم تحديده من خلال عملية الجدولة.
- 4) في تاريخ زمني محدد هل ينتهي المشروع حسب الخطة أم لا، وفي حالة تأخر المشروع، ما هي قيمة هذه الفترة الزمنية؟

ثانياً 🛭 على صعيد النشاطات:

- إعطاء الزمن لبدء أي نشاط ولنهاية النشاط.
- 2) بيان التواريخ التي يمكن أن يسمح لغايتها تأجيل بداية أي نشاط من خلال حساب قيمة المرونة (الوقت الفائض) لذلك النشاط.

الأوقات الأربعة للنشاط

يتميز كل نشاط في المخطط بأربعة أوقات، وهذه الأوقات الأربعة يمكن الحصول عليها من خلال عمليات حسابية سنوردها لاحقاً بعد تعريف هذه الأزمنة الخاصة بكل نشاط:

- 1) وقت البداية المبكر (و ب ب) (Earliest Start Time 🛚 EST): وهو أبكر وقت لابتداء نشاط ما بدون مخالفة متطلبات النشاطات التي تسبقه. لا يمكن للنشاط أن يبدأ قبل هذا الوقت.
- 2) وقت النهاية المبكر (و ن ب) (Earliest finish Time 🛚 EfT): وهو أبكر وقت يمكن أن ينتهي عنده النشاط إذا بدأ في وقت البداية المبكرة. لا يمكن أن ينتهي هذا النشاط قبل هذا التاريخ.
- 3) وقت النهاية المتأخر (و ن ت) (Latest finish Time 🛚 LfT): وهو آخر وقت يمكن أن ينتهي عنده النشاط دون أن يؤدي إلى تأخير المشروع ككل عن المدة المحددة.
- 4) وقت البداية المتأخر (و ب ت) (Latest Start Time 🛚 LST): وهو آخر وقت يمكن لأي نشاط أن يبدأ به دون تأخير المشروع ككل، وهو ناتج طرح مدة النشاط من وقت النهاية المتأخرة.

المرور الأمامي

الهـدف مـن استخراج المـرور الأمـامي (forward Pass) تحديد الزمـن الكلـي للمشـروع ووقـت البدايـة المبكـر والنهاية المبكر للنشاطات المختلفة بدءاً من أول حدث وهو حدث البداية للمشروع وحتى آخر حدث وهو حدث النهاية للمشروع.

من المهم قبل البدء بحسابات المرور الأمامي معرفة زمن بداية المشروع، وقت البداية المبكر لأول نشاط في المشروع. عادة يكون الوقت المبكر لبداية المشروع صفراً أو محدداً من قبل الإدارة. بعد تحديد وقت بداية المشروع نبدأ بسلسلة من العمليات الحسابية من أجل معرفة وقت البداية المبكر ووقت النهاية المبكر لكل نشاط من نشاطات المشروع اعتماداً على العلاقات التالية:

و ب ب لأول نشاط = و ب ب لأول نشاط

2- وقت النهاية المبكر للنشاط = وقت البداية المبكر للنشاط + زمن النشاط.

و ن ب للنشاط = و ب ب للنشاط + زمن النشاط

3- في حالة ارتباط النشاط صاحب العلاقة باتجاه أو مسار واحد يكون:

وقت البداية المبكر للنشاط = وقت النهاية المبكرة للنشاط السابق

و ب ب للنشاط = و ن ب للنشاط السابق

وفي حالة وجود أكثر من مسار أو اتجاه أي أكثر من نشاط سابق ينتهي في حدث بداية نشاط ما، يكون وقت لبداية المبكر لهذا النشاط، أي؛

= أعظم {و ن ب للنشاطات السابقة}

ولكل مسار أو اتجاه يرتبط به النشاط صاحب العلاقة، أي لكل نشاط من النشاطات السابقة.

4- وقت النهاية المبكر للمشروع يساوى وقت النهاية المبكر لآخر نشاط فى المشروع، أى:

و ن ب للمشروع = و ن ب لنشاط النهاية

وفي حالة انتهاء المشروع بأكثر من نشاط يكون وقت النهاية المبكر للمشروع يساوي أكبر وقت نهاية مبكر لنشاطات نهاية المشروع

و ن ب للمشروع = أعظم {و ن ب من نشاطات النهاية}

تدریب (4)

يمثـل المخطـط السـهمـي لمشـروع موضحـاً عليـه رمـوز النشاطـات والمـدة اللازمـة لتنفيـذ كـل نشـاط بالأيـام والمطلوب:

- ایجاد وقت البدایة المبکر لکل نشاط.
- 2- إيجاد وقت النهاية المبكر لكل نشاط.
- :- إيجاد النهاية المبكرة للمشروع علماً بأن تاريخ بداية المشروع هو (صفر).

المرور الخلفى

على العكس من المرور الأمامي الذي يزودنا بأوقات البداية والنهاية المبكرة للنشاطات، فإن المرور الخلفي على العكس من (Backward Pass) يزودنا بأوقات البداية والنهاية المتأخرة لتلك النشاطات في المشروع. وعلى العكس من المرور الأمامي الذي نبدأ فيه من بداية المشروع باتجاه النهاية، فإن المرور الخلفي نبدأ فيه من نهاية المشروع ونرجع باتجاه البداية ومن هنا كانت التسمية بالمرور الخلفي.

فبعد أن نكون قد أوجدنا وقت النهاية المبكر للمشروع، فإننا نساويه بوقت النهاية المتأخر للمشروع ونبدأ

بالحسابات المتعلقة بإيجاد وقت النهاية والبداية المتأخرين للنشاطات كما هو موضح في العلاقات التالية:

ا- وقت النهاية المتأخر للمشروع يساوي وقت النهاية المبكر للمشروع فرضاً أو يحدد من قبل الإدارة، وأيضاً
 يساوى وقت النهاية المتأخر لنشاط النهاية، أى؛

- و ن ت للمشروع = و ن ب للمشروع = و ن ت لنشاط النهاية
- 2- وقت البداية المتأخر للنشاط يساوى وقت النهاية المتأخر للنشاط مطروحاً منه زمن النشاط، أى؛
 - و ب ت النشاط = و ن ت للنشاط 🛚 الزمن للنشاط
- 3- وقت النهاية المتأخر للنشاط يساوي وقت البداية المتأخر للنشاط اللاحق، وفي حالة وجود أكثر من مسار يكون وقت النهاية المتأخر للنشاط عبارة عن أصغر وقت بداية متأخر من جميع النشاطات اللاحقة؛
 - و ن ت للنشاط = أصغر {و ب ت للنشاطات اللاحقة}
 - 4- وقت البداية المتأخر للمشروع يساوى وقت البداية المتأخر لأول نشاط في المشروع، أي أن:
 - و ب ت للمشروع = و ب ت لأول نشاط

في حالة وجود أكثر من مسار في بداية المشروع، يكون وقت البداية المتأخر للمشروع أصفر آخر وقت ابتداء لجميع النشاطات؛

و ب ت للنشاط = أصغر {و ب ت لجميع نشاطات البداية}

تدریب (5)

أوجد وقت البداية المتأخر ووقت النهاية المتأخر لكل من النشاطات في التدريب السابق رقم (4) باستخدام المرور الخلفي

المسار الحرج

المسار الحرج هو أطول طريق أو مسار متصل في الشبكة أو هو المسار الذي لا يوجد فيه وقت فائض ويتكون من مجموعة من النشاطات المختلفة، وفي نفس الوقت فإن هذا المسار يحدد أقل وقت يمكن خلال إنجاز المشروع.

إن التأخير في تنفيذ أي نشاط من النشاطات الحرجة سيؤدي إلى تأخير تسليم المشروع. ومن المهم ملاحظة أن الوقت الفائض أي قيم المرونة الأربعة لجميع النشاطات التي تقع على المسار الحرج تساوي صفراً ويمكن أن يكون للمشروع أكثر من مسار حرج واحد. وتسمى النشاطات التي تقع على المسار الحرج بالنشاطات الحرجة وتسمى باقي النشاطات بالنشاطات غير الحرجة. ويمكن إيجاد المسار الحرج للمشروع باستخدام واحدة أو أكثر من الطرق التالية:

(٦) باستخدام المخطط الشبكي

من المخطط الشبكي للمشروع نقوم بتحديد جميع المسارات التي يمكن من خلالها الوصول من بداية المشروع إلى نهايته، بعد ذلك نقوم بحساب الزمن اللازم لإنجاز كل من المسارات التي قمنا بتحديدها، فيكون المسار الحرج هو المسار الذي يحتاج إلى أطول وقت لإنجازه.

(2) باستخدام أوقات النشاط الأربعة في المخطط

يتكون المسار الحرج من النشاطات المتصلة التي تفي بالشروط التالية لكل نشاط:

- أ. وقت البداية المبكر = وقت البداية المتأخر.
- ب. وقت النهاية المبكر = وقت النهاية المتأخر.
- ج. وقت البداية المبكر + زمن النشاط = وقت النهاية المتأخر 🛚 زمن النشاط
 - (3) باستخدام أوقات النشاط من الجدول

تتميز النشاطات المكونة للمسار الحرج بأن قيم المرونة لها تساوي صفراً، بناء عليه وبعد حساب قيم المرونة لكل من النشاطات المكونة للمشروع، فإن أي نشاط تكون جميع قيم المرونة له مساوية للصفر، يكون نشاطاً حرجاً وعليه فإن سلسلة النشاطات التي تربط حدث بداية المشروع مع حدث نهايته تكون المسار الحرج.

الوقت الفائض

الوقت الفائض أو ما يسمى أحياناً بالمرونة (float) هي مقدار التعويم الذي يتمتع به النشاط غير الحرج. تتكون نشاطات المشروع من نوعين من النشاطات من ناحية وجود أو عدم وجود قيمة للمرونة، فالنشاطات التي تقع على المسار الحرج لا يوجد لها وقت فائض وتسمى بالنشاطات الحرجة وهي تلك النشاطات التي يوجد لها ستؤدي إلى تأخير المشروع فيما لو تأخرت، أما النشاطات غير الحرجة فهي تلك النشاطات التي يوجد لها قيمـة مرونـة، بمعنـى أنـه مـن الممكـن تأخير البدايـة أو النهايـة المبتكريـن بمقـدار هـذه المرونـة دون تأخير المشروع ككل.

من المعروف إن وقت البداية المبكر ووقت النهاية المتأخر يمثلان الزمنيين اللذين يجب أن يتم إنجاز النشاط فيما بينهما، والفترة الزمنية الفائضة عن زمن النشاط فيما بين هذين الحدثين تسمى بالمرونة في إنجاز النشاط، وتنقسم وفقاً لمدى تأثيرها على النشاطات السابقة واللاحقة إلى الأنواع التالية:

أُولًا ۚ المرونة الكلية (م ك) ﴿ (Total float Tf)

وهي الفترة الزمنية التي نستطيع تأخير البدء في النشاط دون تأخير موعد إنهاء المشروع.

ثانياً 🏾 المرونة الحرة (م ح) 🖺 (free float ff)

وهي الفترة الزمنية التي نستطيع تأخير البدء في النشاط بمقدارها دون التأخير في موعد إنهاء المشروع أو موعد بداية أى نشاط لاحق.

ثالثاً [المرونة المتداخلة (م م) [(Interfering float INTF)

وهي الفترة الزمنية التي يمكن تأخير البدء في النشاط بمقدارها دون التأخير في موعد إنهاء المشروع، علماً بأنها ستؤدى إلى تأخير البدء في بعض النشاطات التي تليها.

رابعاً 🛭 المرونة المستقلة (م ق) 🖺 (Independent float INDf)

وهي الفترة التي يمكن تأخير البدء في النشاط بمقدارها، دون التأخير في موعد إنهاء المشروع أو موعد بداية أي نشاط لاحـق أو دون أن يتأخر النشاط المعنـي نتيجـة أي تأخير فـي أي نشاط سابق ضمـن حـدوده، بمعنى أن ينتهي عند أو قبل وقت النهاية المتأخرة.

يمكن حساب أنواع المرونة الأربعة من وقت النشاط اعتماداً على المعادلات التالية:

1- المرونـة الكليـة للنشاط (م ك للنشاط) وتساوي وقـت البدايـة المتـأخر مطروحـاً مـن وقـت البدايـة المبكـر للنشاط؛

= و ب ت للنشاط 🛚 و ب ب للنشاط

أو تساوى وقت النهاية المتأخر مطروحاً منه وقت النهاية المبكر للنشاط؛

- = و ن ت للنشاط 🛚 و ن ب للنشاط
- 2- المرونة الحرة للنشاط (م ح للنشاط) تساوي أصغر وقت بداية مبكر للنشاطات اللاحقة مطروحاً منها وقت النهاية المبكر للنشاط؛
 - = أصفر {و ب ب للنشاطات اللاحقة} 🏿 و ن ب للنشاط
 - 3- المرونة المتداخلة للنشاط (م م للنشاط) وتساوى المرونة الكلية مطروحاً منه المرونة الحرة للنشاط؛
 - = م ك للنشاط 🛚 م ح للنشاط

ومن الجدير ذكره أن قيمة المرونة المتداخلة دائماً أقل أو تساوي المرونة الكلية.

4- المرونة المستقلة للنشاط (م ق للنشاط) وتساوي أصغر وقت بداية مبكر للنشاطات اللاحقة مطروحاً منه أعظم وقت نهاية متأخر للنشاطات السابقة مطروحاً منه زمن النشاط، وفي حالة الحصول على قيمة أقل من صفر، تكون قيمة المرونة المستقلة تساوي صفراً ويعبر عن قيمة المرونة المستقلة لنشاط بما يلي:

أعظم {[أصغر (و ب ب للنشاط اللاحق) 🏿 أعظم (و ن ت للنشاط السابق) 🖺 الزمن للنشاط]، أو صفراً}

عزيزي القارئ لا تنسى أن قيم جميع أنواع المرونات للنشاطات الحرجة وهي التي تقع على المسار الحرج دائماً يساوي صفراً. لغايات هذه الوحدة سنكتفي بإيجاد المرونة الكلية والحرة للنشاط.

تدریب (6)

أوجد قيم المرونة الكلية والحرة للمشروع الذي قمنا بحساب أوقات البداية والنهاية له في التدريبين رقم (4) و(5).

استخدام الجداول في إدارة المشروع

عزيـزي الطـالب حتـــ الآن تعلمنـا عــدة أدوات للتخطيـط للمشـروع والسـيطرة عليــه مــن بــدايتــه وحتـــ نهـايتــه، والجـداول هــي عبارة عن أداة مـكمـلــة لعمـليــة إدارة المشاريع. وقد تستخدم الجـداول لغايات إعـداد تـقارير عن المشروع وإدارتــه، وهــي طريــقــة سهـلــة وفعالــة، وخصوصاً فــي المشاريع الكبيرة.

نشأت الحاجـة لإعـداد مثـل هـذه جـداول فـي حالـة المشاريع الكبيرة التـي يصـعب السيطرة عليها ومتابعتها باستخدام أداة واحدة للإدارة. ولتعبئة هذا الجدول يمكن إتباع الخطوات التالية:

- آ. إملأ البيانات الخاصة لكل نشاط مثل رقم النشاط، اسم النشاط، الوقت اللازم لإنجازه، وأية بيانات أخرى.
 - عن المخطط الشبكى إملاً وقت البداية المبكر (و ب ب) ووقت النهاية المتأخر لكل نشاط.
 - 3. اجمع الزمن اللازم لتنفيذ النشاط ووقت البداية المبكر للحصول على وقت النهاية المبكر (و ن ب).
- 4. اطرح الزمن اللازم لتنفيذ النشاط من وقت النهاية المتأخر (و ن ت) للحصول على وقت البداية المتأخر (و ب ت).
 - لإيجاد الوقت الفائض (م ك) و (م ح) طبق المعادلات التي ذكرناها في الجزء السابق.

معظم برامج الحاسوب التي تستخدم لإدارة المشاريع لها القدرة على تزويد المستخدم بمثل هذا الجدول.

تدریب (7):

لخص بيانات المشروع التي قمت بها في التدريبات (3) و(4) و(5) في صيغة جدول. ما الفائدة من هذا الجدول؟

أسئلة التقويم الذاتي (6)

- ·- اذكر أوقات النشاط الأربعة، وما الفرق بينها؟
- 2- كيف يمكن إيجاد مدة المشروع وما هي الخطوات الحسابية الواجب إتباعها؟
 - 3- ما المقصود بالمرور الأمامى للمخطط الشبكى؟
 - 4- ما المقصود بالمرور الخلفي للمخطط الشبكي؟
 - 5- أيهما أهم المرور الأمامي أم المرور الخلفي؟ ولماذا.
 - 6- ما المقصود بالنشاطات الحرجة للمشروع؟
- 7- ما هو المسار الحرج، وهل يمكن وجود أكثر من مسار حرج في المشروع الواحد؟
- 8- اذكر الطرق المختلفة لتحديد المسار الحرج. هل يختلف المسار الحرج حسب الطريقة المتبعة؟ لماذا؟
 - 9- ما أهمية الجداول في تلخيص بيانات المشروع؟ وكيف يمكن استخدامها في إدارة المشروع؟

تسريع المشروع

عزيزي القارئ الهدف الرئيسي من تسريع المشروع هو معرفة كيف يمكن تقليل (Reduce) مدة المشروع بأقـل (Exedite) مدة المشروع بأقـل زيادة ممكنـة فـي الكلفـة المبـاشرة (Direct Cost) وذلـك عـن طريـق تســريع (Exedite) النشاطـات ذات الكلفـة الأقل، كل ذلك بفرض عدم محدودية الموارد (Unlimited Resources)؛ أي أن جميع الموارد المطلوبة متوفرة.

لماذا تسريع المشروع؟

إن الحاجة إلى تسريع المشروع قد تنشأ عن عدة أسباب منها رغبة الإدارة في إنهاء المشروع في وقت أبكر من الوقت المبكر من الوقت المبحدول بسبب وجود حوافز معينة أو رغبة صاحب العمل لإنهاء المشروع قبل الوقت المبكر المتوقع نظراً لأهمية المشروع سواء الاقتصادية أو غيرها. وعند الحديث عن تسريع المشروع يطرح السؤال التالي نفسه: ما هي الأسباب الموجبة لدراسة بدائل الوقت والكلفة ولماذا نختصر أو نضغط وقت نشاط أو مشروع؟ للإجابة على هذه التساؤلات نورد النقاط التالية؛

- 1- إن الوقت يساوي مال؛ أي أن للوقت كلفة وبالتالي فإن الزيادة في مدة المشروع تعني زيادة في كلفة المشروع.
 - 2- إن زيادة مدة المشروع تعنى زيادة الكلفة وبالتالي فقدان إمكانية الفرص البديلة (Opportunity Cost).
- 3- غالباً ما تفرض شروط العقد أو الاتفاق على إنهاء نشاط معين أو مشروع ما ضمن فترة زمنية محدودة بحيث يترتب على أي زيادة في زمن التنفيذ أو أي تأخير عن موعد التسليم كلفة إضافية ممثلة بشروط جزائية، وعليه يصبح للوقت كلفة إضافية غير تلك التي ذكرناها في البنود السابقة.
- 4- إن اختصار أو ضغط زمن أي نشاط أو مشروع يكون بزيادة مستوى الموارد المستخدمة في ذلك المشروع خلال فترة التنفيذ، مما قد يؤدي إلى سوء استخدام أو تدني الكفاءة في استخدام هذه الموارد، وبالتالي زيادة كلفة الموارد أو كلفة المباشرة في المشروع بصورة غير مبررة أو مقبولة.

وعليه فلابد من دراسة جميع البدائل المتاحة لتنفيذ أي مشروع للخروج بالحل الأمثل أو البديل الأفضل، من أجل تنفيذ المشروع، بمعنى الوصول إلى أقل كلفة للمشروع، آخذين بالاعتبار أن للزمن كلفة.

تعريفات

قبل الخوض في قواعد ضفط المخطط سوف نستعرض بعض التعريفات والفرضيات الأساسية:

الوقت الطبيعي للنشاط أو المشروع (و ط) (Normal Time)؛ هو الزمن اللازم لإنجاز أو تنفيذ النشاط في ظل الظروف الطبيعية دون إبطاء أو تعجيل.

الكلفة الطبيعية للنشاط أو المشروع (ك ط) (Normal Cost)؛ وهي كلفة النشاط أو المشروع عند تنفيذه أو إنجازه خلال الوقت الطبيعي له دون الحاجة إلى رفع مستويات الموارد المطلوبة لتنفيذ المشروع.

الوقت المضغوط أو السريع للنشاط أو المشروع (و م) (Crash Time)؛ هو أقل زمن يمكن تنفيذ النشاط أو المشروع خلاله بحيث لا يمكن تنفيذ النشاط أو المشروع في زمن أقل مهما زادت مستويات الموارد المستخدمة في التنفيذ.

الكلفة المضغوطة أو السريعة للنشاط أو المشـروع (ك م) (Crosh Cost)؛ وهــي الكلفــة المترتبــة علـــى تنفيــذ النشـاط أو المشروع فــى أقل وقت ممكن.

ويتـم تحديـد هـذه الأوقـات والكلفـة المتعلقـة بهـا لكـل نشاط بنـاء علـى محاسبة الكلـف والخبرة العمليـة المكتسبة فـى مجال المشروع.

العلاقة بين الوقت والكلفة للنشاط

هناك علاقة بين وقت النشاط وكلفته ومن البديهي أنه كلما أردنا إنهاء نشاط ما في وقت أقل من المجدول وجب تجنيد موارد أكثر مما يؤدى إلى زيادة الكلفة المباشرة للنشاط ومن الجدير بالذكر أنه يمكن تقليل وقت النشاط إلى حد معين يستحيل بعده تقليل الوقت مهما ازدادت الموارد ومهما تكلفنا من مصاريف. وهناك معايير تتم على أساسها عملية تخفيض وقت المشروع مقابل زيادة كلفته نذكر منها:

- الوفورات المتحققة ومقارنتها بالكلفة الصحيحة؛ وبالتالي نستمر في تخفيض الوقت طالما أن الوفورات
 مساوية أو أكبر من التكاليف المصاحبة.
 - 2) التخفيض وفقاً لميزانية محددة؛ وهنا نستمر بالتخفيض طالما أن الميزانية أو ما تبقى منها يسمح بذلك.
 - 3) التخفيض وفقاً لتاريخ محدد من قبل الإدارة.

يسمى وقت النشاط الذي يستخدم الحد الأدنى من الموارد بالوقت الطبيعي (و ط) ويكون مرتبطاً بكلفة مباشرة تسمى بالكلفة الطبيعية (ك ط)، كما ويسمى الوقت الذي لا يمكن تقليل مدة إنهاء النشاط عنه بالوقت المضغوط (و م)، وتسمى الكلفة المباشرة المرتبطة به بالكلفة المضغوطة (ك م). الشكل (6 ½ 7) يمثل علاقة خط مستقيم بين الوقت والكلفة لنشاط حيث النقطة الطبيعية (ن ط) (Normal Point) تمثل نقطة تقاطع الوقت والكلفة الطبيعيين والنقطة المضغوطة (ن م) (Crash Point) هي النقطة المكونة من تقاطع الوقت والكلفة المبيعيين والنقطة الواصل ما بين النقطة الطبيعية والمضغوطة يمثل البحائل المتوفرة لإنجاز هذا النشاط، فمثلاً إذا أردنا إنهاء النشاط في وقت (و1) كانت الكلفة المباشرة للنشاط هي داء) والمكس صحيح.

العلاقة بين الوقت والكلفة عادة ما تكون عكسية ويمكن أن تأخذ عدة أشكال ولكن أكثر الحالات استعمالاً هي خط مستقيم (Straight Line) حيث تكون العلاقة ما بين الوقت والكلفة خطية؛ أي كلما قل الوقت زادت الكلفة حتى نصل إلى النقطة المضغوطة وتمثل العلاقة بين الوقت والكلفة في حالة العلاقة من الدرجة الأولى بخط له ميل ثابت يسمى ميل الكلفة (Cost Slope)، ويمكن تعريف ميل الكلفة كما يلي؛

ميل الكلفة = ك = الكلفة المضغوطة [الكلفة الطبيعية = ك م [ك ط

الوقت الطبيعي 🏻 الوقت المضغوط 🧪 و ط 🖺 و م

من هذه المعادلة يتضح أن إنقاص وحدة زمنية واحدة للنشاط ينتج عنه زيادة الكلفة مبلغاً ثابتاً يساوي ميل خط الكلفة وهذه العلاقة صحيحة لنشاط ما بين النقطة الطبيعية والنقطة المضغوطة.

حيث أن؛

ك = ميل الكلفة وهم معدل الزيادة في الكلفة لكل وحدة زمن.

ك م = الكلفة المضغوطة للنشاط

ك ط = الكلفة الطبيعية للنشاط

و ط = الوقت الطبيعى للنشاط

و م = الوقت المضغوط للنشاط

ن م = النقطة المضغوطة

ن ط = النقطة الطبيعية

تدریب (8)

نشاط مكون من تجهيز لوحة هندسية لمشروع طريق بمقياس (100) سنتيمتر في (70) سنتيمتر، من المعروف أن حجم هذه اللوحة لا يسمح لأكثر من رسام واحد بالعمل في نفس الوقت على تجهيز اللوحة، إذا علمنا أن هذه اللوحة بحاجة في المتوسط إلى 40 ساعة عمل وكلفة ساعة العمل الطبيعية للرسام هي 6 دنانير/ ساعة، وكلفة ساعة العمل الإضافية للرسام هي 9 دنانير/ ساعة. نظراً لأهمية المشروع فقد قرر مدير الشركة

العمل بثلاث نوبات (Shifts) في اليوم وكل نوبة 8 ساعات، فإذا كان عدد أيام العمل في الأسبوع 5 أيام فأوجد ما يلى:

- 1. الوقت والكلفة الطبيعيين.
- الوقت والكلفة المضغوطين.
- البدايل المتوفرة أمام مدير الشركة لإنهاء اللوحة.

أسئلة التقويم الذاتى (7)

- ما المقصود بتسريع المشروع؟
- 2- ناقش الفائدة من تسريع المشروع.
- 3- عرف النقطة الطبيعية والنقطة المضغوطة، وما الفرق بينهما؟
- 4- عند تسريع المشروع ما هي طبيعة العلاقة التي نفرضها بين الوقت والكلفة؟
 - 5- ما المقصود بميل الكلفة؟

المشاكل المصاحبة للمخططات الشبكية:

المخطط الشبكي عبارة عن نموذج (Model) يمثل الحالة الواقعية للمشروع قيد الدراسة، لذلك كلما كان النموذج أقرب إلى الواقع كان التنبؤ بمستقبل العمل في المشروع أيضاً أقرب إلى الواقع.

هناك بعض المشاكل التي قد تصاحب استخدام المخططات الشبكية نذكر منها:

- ا صعوبة تمثيل المشروع للواقع بسبب تعقيد المشروع و/ أو عدم وجود خبرة سابقة لمشاريع مشابهة
 لدى المخططين.
 - 2- عدم وضوح أهداف المشروع أو فهمها.
- 3- توقع الحصول على نتائج سريعة من التخطيط، فالتخطيط يتطلب وقتاً وجهداً كبيرين وليست هناك طريقة مختصرة لوضع الخطط.
 - 4- الاستعانة بخبرات من خارج المشروع ليس لديها الصورة كاملة لوضع خطة المشروع.
 - 5- عدم وجود تفاهم بين القائمين على تخطيط المشروع والقائمين على التنفيذ.
- 6- في حالة الخطط المعتمدة على بعضها، عدم انسجام الخطط مع بعضها وفشل خطة ما مما قد يؤدي إلى فشل خطط أخرى مترتبة عليها.
 - 7- نقص البيانات والمعلومات أو عدم دقتها مما قد يؤدي للوصول إلى مخطط شبكي خاطئ.
 - 8- استخدام الإحصائيات والأرقام للنشاطات دون معرفة مدلولاتها الحقيقية.
- 9- عدم الدقة في استخدام هيكل تقسيم العمل لتوزيع وتحديد المسؤوليات لتنفيذ كل جزء من أجزاء المشروع.
- 10- عدم الاعتماد على مقاييس أو بيانات صحيحة أو واقعيـة عنـد وضع الفرضيات فيمـا يتعلـق بأوقـات النشاطات أو الكلف المصاحبة لها.
- ٦٦- النظر إلى المخطط الشبكي من زاوية ضيقة أو كأداة عابرة، إذ أن التخطيط الشبكي عبارة عن عملية ديناميكية متشابكة ومترابطة ويجب النظر إليها على هذا الأساس.
- 12- الفشل في تنفيذ المشروع حسب المخطط الشبكي مما قد يؤدي إلى ضعف الثقة بالمخطط ككل والانتعاد عنه.
- 13- الاعتقاد بأن كل شخص يملك القدرة على القيام بعملية التخطيط الشبكي، فالتخطيط يتطلب قدرات ومهارات خاصة يجب توافرها في الأشخاص الذين يقومون بهذه العملية.

14- انعـزال المخططيـن للمشـروع عـن المنفذيـن وبالتـالي وضـع مخططـات شبكيـة غيـر واقعيـة وغيـر قابلـة للتنفيذ.

أسئلة التقويم الذاتي (8)

- ۵ هناك وجه شبه بین النموذج الریاضی ونموذج المخطط الشبكی؟ اشرح.
- 2- اذكر بعض المشاكل التي قد تصاحب استخدام المخططات الشبكية في إدارة المشاريع؟

حالة تطبيقية

شركة متخصصة في إنتاج الأجهزة المنزلية بأنواعها تنوي طرح منتج جديد في الأسواق في كانون ثاني من عام 2000 وقد استطاع مدير المشروع تطوير وصف كامل للنشاطات اللازمة لتنفيذ المشروع من خلال الخبرة السابقة في مشروع مماثل، علماً بأن الكلفة المتوقعة حوالي مليون دينار.

وقد تم تلخيص النشاطات التحضيرية المبينة في الجدول (6 🛽 2) والتي تبين قائمة النشاطات والعلاقات بين هذه النشاطات والوقت المتوقع لكل منها:

جدول (6 🏿 2): قائمة النشاطات لمشروع الأجهزة المنزلية

النشاطات السابقة	الوقت (أشهر)	وصف النشاط	رمز النشاط
-	1	دراسة الإمكانات الفنية لتصنيع منتج جديد	ĵ
-	4	البدء بإجراء الجدوى الاقتصادية للمنتج الجديد	Ų
ĺ	5	تقديم التقرير الفني للإدارة	Ş
ب	2	تقديم تقرير بنتائج الجدوى الاقتصادية إلى الإدارة	٥
Î	4	وضع تصميم ومواصفات المنتج الجديد	
۵, ۶	2	حملة إعلانية للترويج للمنتج الجديد قبل طرحه السوق	9
چ،د،هـ	2	التحضير لتصنيع المنتج الجديد	j
څ،د،هـ	1	الإنتاج التجريبي والبدء بتخزين وتسويق المنتج الجديد	5
ز، ج	2	فترة إنتاج تجريبي	Ь
Ь	2	طرح الإنتاج الجديد في الأسواق والقيام بحملة إعلانية	ڽ

والمطلوب:

- ارسم المخطط السهمى للمشروع وترقيمه.
 - 2- إيجاد أوقات النشاطات الأربعة.
 - 3- حساب المرونة الكلية والحرة للنشاطات.
 - 4- تحديد المسار الحرج للمشروع.
- ٥- ما هي مدة المشروع ومتى تستطيع الشركة طرح إنتاجها في السوق؟

بالنظر إلى المخطط الشبكي والجدول أعلاه نستنتج وجود مسارين حرجين وهما:

- 1. المسار (أ، ج، وهمى، ز، ط، ى) ويمكن التعبير عنه بأرقام الأحداث بالمسار (15 🏿 13 🖺 ١١ 🖺 9 🖺 7 🖺 3 🖺 ١).
- 2. والمسار الثاني هو المسار (ب، د، وهمي، ز، ط، ص) كما ويمكن التعبير عنه بأرقام الأحداث بالمسار (15 🏿 13 🐧 🖺 11 🖺 9 🖺 7 🖺 5 🖺 1).

حيث أن طول كل منهما يساوي ٦٤ شهراً وهي المدة اللازمة لإنجاز المشروع.

مما سبق نستخلص أن الشركة يجب أن تبدأ التحضير لطرح إنتاجها في السوق ببداية شهر كانون الثاني من عام 1999، أى قبل إثنا عشر شهراً من طرح المنتج الجديد فى بداية شهر كانون ثانى من عام 2000.

الخلاصة:

التخطيط باستخدام المخططات الشبكيـة مـن أهـم الطـرق المتبعـة حاليـاً فــي التخطيط والتنفيـذ والسيطرة والمتابعة بواسطة تحديد الأهداف والمراحل والسياسات الكفيلة بتحقيق غايات المشروع. من بداية المشروع وحتـــى نهـايته حيـث يعمــل المخطط علـــى فهــم أساسيات ومبـادئ التحليـل الشبكــي ومــن ثـم بنـاء النمــوذج المناسب القادر علـــى التنبؤ بأحداث المستقبل بطريقة عملية وعلمية.

هناك عدة طرق تستخدم لتمثيل المخطط الشبكي سواء باستخدام طريقة المخطط السهمي (ADM) يَّ النشاط على على السلمية (AON) يَّ أو باســـتخدام السلمية (AON) يَّ أو باســـتخدام المخططات السلمية / المتكررة.

ولاشك أن من أهم أسباب استخدام المخططات الشبكية في إدارة المشاريع هو قدرتها على إعادة التخطيط كلما دعت الحاجة، وحتى نهاية آخر نشاط في المشروع، كما أن التخطيط الجيد يساعد على تفادي الكثير من المشاكل التى عادة ما تصاحب استخدام المخططات الشبكية.

لإيجاد الوقت المتوقع للمشروع يجب إتباع مرحلتين، الأولى تسمى مرحلة المرور الأمامي والثانية مرحلة المرور الأمامي والثانية مرحلة المرور الخلفي، ومن ثم يمكن تحديد الوقت اللازم لتنفيذ المشروع وأوقات النشاطات الأربعة، والمسار الحرج، والوقت الفائض وما إلى ذلك من المعلومات اللازمة لإدارة المشروع.

إجابات التدريبات

تدریب رقم (۱)

الشكل النهائي الذي يمثل الشبكة السهمية للمشروع يصبح كما هو مبين في الشكل (6 🏿 9)

تدریب رقم (2):

الشكل (6 🏿 10) يمثل المخطط التصدري للمشروع

تدریب رقم (3)

عزيزي الدارس من غير المنطقي أن يقوم كل فريق مختص بعمله كاملاً قبل قيام الفريق الثاني بعمله، مثلاً أن يقوم فريق تمهيد الطريق بعمله كاملاً لمدة عشرين يوماً ((20) (1) = 20]، قبل أن يبدأ الفريق المختص بالوصف عمله لأن عملية الرصف تعتمد على عملية التمهيد مما قد ينشأ عنه طول مدة المشروع واستغلال سيء للموارد.

لذا، قد يكون الحل الأكثر قبولاً تجزئ العمل إلى أربعة أجزاء كل منها خمسة كيلو مترات بحيث يقوم الفريق المختص بتمهيد جزء من الطريق (5 كيلو متر) ثم ينتقل إلى الجزء التالي، وفي نفس الوقت الذي يقوم فيه الفريق الأول بتمهيد الجزء الثاني (الـ 5 كيلو متر التالية)، يعمل الفريق المختص بالرصف برصف الجزء الأول الذي تم تمهيد. عندما تنتهي عملية الرصف في الجزء الأول يذهب فريق الرصف إلى خمسة الكيلو مترات التالية بعد أن يكون الفريق الأول قد قام بعمله فيها. ويأتي هنا دور الفريق المختص بالتعبيد حيث يقوم بتعبيد خمسة الكيلو مترات الأولى التي تم رصفها وقبل ذلك تمهيدها، بينما فريقا العمل الآخران يعمل كل منهما في جزء آخر من الطريق والجدول التالي (6 ½ 4) يبين طريقة التقسيم. هذا التجزئ يتضمن الاستخدام الأفضل للموارد حيث لا تبقى الموارد معطلة إلا في أقل حدود.

مسرد المصطلحات

إدارة المشروع الكاملة 🛭 Complete Project Management (CPM)

الإدارة الكاملة للمشروع من لحظة التفكير به وتخطيطه وتنظيمه ومن ثم جدولته ومتابعة تنيفذه والسيطرة عليه حتى الانتهاء منه وتسليمه.

تنفیذ 🛚 Implementation

القيام بالعمل المخطط له.

جدولة 🛚 Scheduling

إيجاد أوقات البداية والنهاية المبكرة والمتأخرة للنشاطات وللمشروع ككل.

حدث 🛚 Event

نقطة لحظية في الزمن تفصل بين بداية نشاط أو نشاطات لاحقة ونهاية نشاط أو نشاطات سابقة، لا تستهلك وقت أو موارد.

زمن تفاؤلی 🏿 Optimistic Time

أقصر زمن يمكن تنفيذ النشاط أو المشروع من خلاله.

زمن أكثر احتمالًا 🏿 Probable Time

أكثر زمن احتمالاً لتنفيذ النشاط أو المشروع من خلاله.

زمن تشاؤمی 🏿 Pessmistic Time

أطول زمن يمكن تنفيذ النشاط أو المشروع من خلاله.

طريقة المخطط السهمي 🛚 Arrow Diagramming Method (ADM)

أسلوب لتمثيل نشاطات المشروع باستخدام الأسهم.

طريقة المخطط التصدري 🏿 Procedence Diagramming Method (PDM)

أسلوب لتمثيل نشاطات المشروع باستخدام الخانة 🏿 مربع –.

طريقة تقييم ومراجعة البرنامج 🛚 Program Evaluation & Review Technique

أسلوب لتمثيل نشاطات المشروع باستخدام الأسهم مع إدخال المفاهيم الإحصائية على المخطط الشبكي. طريقة المسار الحرج © Critical Path Method (CPM) أسلوب لإدارة وقت وموارد وكلف المشروع ۩ تخطيط وجدولة وسيطرة على العمل ۩ من بدايته حتى نهايته وتسليمه.

قائمة النشاطات [Activity List

جدول يبين النشاطات اللازمة لمشروع ويظهر معلومات مختلفة عن النشاطات.

كلفة الطبيعة (ك ط) [Normal Cost

كلفة النشاط أو المشروع في ظروف العمل الطبيعية

كلفة مضفوطة (ك م) Crash Cost

كلفة النشاط أو المشروع بعد تسريعه، أي زيادة الكلفة مقابل زمن إنجاز أقل.

مرونة 🛚 float

مقدار الوقت أو السماحية أو التأخير الذى يمكن تأخير العمل بمقداره دون تأخير المشروع.

مورد 🛚 Resource

كل ما هو مادي ولازم لإنجاز العمل.

المسار الحرج 🏻 Critical Path

أطول مسار متصل فى المشروع ويمثل أقصر وقت يمكن إنجاز المشروع فيه.

مدة المشروع 🏿 Project Duration

الزمن اللازم لتنفيذ المشروع

ميل الكلفة 🏿 Cost Slope

الكلفة الواجب دفعها لإنقاص مدة المشروع أو النشاط فترة زمنية واحدة.

قائمة المراجع:

- 1) عامر الدجاني، "طريقة المسار الحرج في إدارة المشاريع الإنشائية"، دار المستقبل العربي، مصر الجديدة، القاهرة، 1985.
 - 2) غالب عباسي، "إدارة المشاريع"، معهد الإدارة العامة، عمان، الأردن، أيلول 1990.
 - 3) غالب عباسي، "أساسيات إدارة المشاريع المتكاملة"، المطابع المركزية، عمان، الأردن، .1995
- 4) كوكر الأسدي ومحمد العزي وشاكر صالح، "إدارة المشاريع الإنشائية"، مطبعة مؤسسة المعاهد الفنية، بغداد، 1984.
- 5) محمـد الجار الله وجمـال نـواره، "إدارة المشاريع الهندسية"، دار جـون وايلـي وأبنـائه، النـاشر جامعـة الملـك سعود، الرياض، المملكة العربية السعودية، 1984.
 - 6) وليد ماضى، مترجم، تأليف هيد سيفن، "تسيير المشاريع"، دار المعرفة، دمشق، 1988.
- Antill, James M., Wood head, Ronald W., Critical Path Methods In Construction Practice, 4th Ed., (7 John Wiley & Sons, New York, U.S.A., 1990.
- 8) Choudhury, S., Projet Management, Tata McGraw I Hill Publishing Company Limited, New Delhi, 1989.
- 9) Clough, Richard H.; & Sears, Glenn A., Construction Project Management, 2nd Ed., John Wiley & Sons, New York, U.S.A., 1972.
- 10) Harris, Robert B., Procedure And Arrow Networking Techniques for Construction, John Wiley & Sons, New York, U.S.A., 1978.

- 11) Harrison, f. L., Advanced Project Management Gower Pulishing Company, England, 1981.
 12) Jain, K. C., Aggarwal, L. N., PERT and CPM, 2nd Ed., Khanna Publishers, Delhi, India, 1985.
- 13) Kerzner, Harold Project Management: A systems Approach to Planning, Scheduling and Controlling, 3rd Ed., Van No strand Reinhold, NY, 1989.
- 14) Meredith, Jack R. and Samuel J. Mantel, JR. Project Management; A Managerial Approach, 2nd E., John Wiley and Sons, New York, U.S.A., 1989.
- 15) Moder, J.,: Philips, C.; and Davis, E., Project Management with CPM, PERT and Precedence Diagramming, 3rd Ed., Van No strand Reinhold Company, New York, U.S.A. 1983.
- 16) Tenah, Kwaku A., The Construction Management Process, Reston Publishing Company, Virginia,
 .U.S.A., 1985